Effect of high intensity training on anaerobic capacity of middle gluteal muscle in Thoroughbred horses.

Res Vet Sci

Equine Research Institute, Japan Racing Association, 321-4 Tokami-cho, Utsunomiya, 320-0856, Tochigi, Japan.

Published: April 2004

We hypothesize that high intensity training for Thoroughbred horses that have been subjected to conventional training could further improve the metabolic properties of the middle gluteal muscle. Nine well-trained horses were subjected to high intensity (80-100% Vdot;O(2)max, 5 minx2) training for 12 weeks. Biopsy samples were obtained from the muscle before and after 4 and 12 weeks of training. Three of the 9 horses did not complete the training programme. In the remaining 6 horses, activities of succinic dehydrogenase (SDH), phosphofructokinase (PFK) and 3-hydroxy acyl CoA dehydrogenase (HAD), and the composition of myosin heavy chain isoforms were analyzed by biochemical techniques. After 12 weeks of training, a significant increase was found in PFK activity but not in the SDH and HAD activities. There were no significant changes in the composition of myosin heavy chain isoforms. The high intensity training in this study was effective at increasing glycolytic enzyme activity, indicating the possibility to improve anaerobic capacity, which potentially could contribute greatly to performance in Thoroughbred horses. This study also highlighted a fact that high intensity training should be given with the great care to prevent the skeletal muscle injuries.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.rvsc.2003.08.010DOI Listing

Publication Analysis

Top Keywords

high intensity
20
intensity training
16
thoroughbred horses
12
training
9
anaerobic capacity
8
middle gluteal
8
gluteal muscle
8
horses subjected
8
weeks training
8
composition myosin
8

Similar Publications

Colon cancer poses a significant threat to global health, and studies have shown a correlation between physical activity (PA) and the incidence of colon cancer. However, existing research has not quantitatively analyzed PA to evaluate its impact on the risk of colon cancer comprehensively. Data related to the study were obtained from the NHANES database for participants aged 20 and above between 2007 and 2018.

View Article and Find Full Text PDF

Hypothalamic arcuate (ARC) kisspeptin neurons are considered the gonadotropin-releasing hormone pulse generator in rats. In virgin rats, the expression of the ARC kisspeptin gene (Kiss1) is repressed by proestrous levels of estradiol-17β (high E2) but not by diestrous levels of E2 (low E2). In lactating rats, ARC Kiss1 expression is repressed by low E2 during late lactation.

View Article and Find Full Text PDF

Suppression of TLR4/NF-κB signaling by kaurenoic acid in a mice model of monosodium urate crystals-induced acute gout.

Arch Biochem Biophys

January 2025

Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan. Electronic address:

Aim: The aim of the current study was to investigate the potential therapeutic effect of kaurenoic acid (KA) against Monosodium Urate Crystals (MSU)- induced acute gout by downregulation of NF-κB signaling pathway, mitigating inflammation and oxidative stress produced by MSU crystals. KA potentially targeted NF-κB pathway activation and provided comprehensive insights through multiple approaches. This was accomplished by advanced analytical techniques.

View Article and Find Full Text PDF

Elemental partitioning, morpho-physiological effects, genotoxicity, and health risk assessment associated with tomato (Solanum lycopersicum L.) grown in soil contaminated with mining tailings.

Environ Res

January 2025

Doctorado en Ciencias Ambientales, Centro de Ciencias de Desarrollo Regional, Universidad Autónoma de Guerrero. Privada de Laurel 13, Col. El Roble, 39640, Acapulco, Guerrero, México; Facultad de Ciencias Agropecuarias y Ambientales, Unidad Tuxpan, Universidad Autónoma de Guerrero. Carretera Iguala-Tuxpan, km 2.5, Iguala de la Independencia, Guerrero, México; Facultad de Ciencias Agropecuarias, Universidad Autónoma del Estado de Morelos. Avenida Universidad 1001, 62210, Cuernavaca, Morelos, México; Laboratorio de Toxicología Ambiental, Departamento de Ciencias Ambientales, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria Coyoacán, Ciudad de México 04510, México; Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos, 47600, Jalisco, México; Escuela Superior de Ciencias de la Tierra, Universidad Autónoma de Guerrero. Ex-hacienda de San Juan Bautista, Taxco el Viejo, 40323, Taxco el Viejo, Guerrero, México. Electronic address:

This study explored the distribution of macronutrients (Ca, Mg, Na, K) and lithogenic (Ba, Cr, Ni, Mn, Fe) and mining-related (As, Pb, Cd, Cu, Zn) toxic metalloids and metals (TMMs) in tomato (Solanum lycopersicum L.), and its effects on plant development, productivity, genotoxicity, and human health, using a soil affected by mine tailings (AS) and an unaffected control soil (CS). The chemistry of soils reflected their mineralogy, and Fe-Ti oxides, sulfides and sulfosalts were found to be the most significant reservoirs of TMMs.

View Article and Find Full Text PDF

Background: Regular mass drug administration of praziquantel has a positive impact on reducing the burden of human schistosomiasis, however transmission still persists in many areas. To reach disease elimination; tailored interventions are needed to not only further reduce infections but also to tackle areas of persistent high prevalences of infection. One proposed approach is timed treatment based on the natural disease transmission cycle in relation to seasons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!