Escherichia coli RNase H folds through a partially folded kinetic intermediate that mirrors a rarely populated, partially unfolded form detectable by native-state hydrogen exchange under equilibrium conditions. Residue 53 is at the interface of two helices known to be structured in this intermediate. Kinetic refolding studies on mutant proteins varying in size and hydrophobicity at residue 53 support a contribution of hydrophobicity to the stabilities of the kinetic intermediate and the transition state. Packing interactions also play a significant role in the stability of these two states, though they play a much larger role in the native-state stability. One dramatic mutation, I53D, results in the conversion from a three-state to a two-state folding mechanism, which is explained most easily through a simple destabilization of the kinetic intermediate such that it is no longer stable with respect to the unfolded state. These results demonstrate that interactions that stabilize an intermediate can accelerate folding if these same interactions are present in the transition state. Our results are consistent with a hierarchical model of folding, where the intermediate consists of native-like interactions, is on-pathway, and is productive for folding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2003.10.052 | DOI Listing |
Small
January 2025
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
The electrocatalytic conversion of 16-electron multistep polysulfides is crucial for lithium-sulfur batteries, while it is hard to achieve compatibility between intricate sulfur reduction processes and appropriate catalysts. Herein, a tandem conversion strategy is reported to boost multi-step intermediate reactions of polysulfides transformation by designing an electrocatalyst featuring cobalt and zinc sites (Co/Zn), where the Zn serve as sites for the conversion of long-chain lithium polysulfides (LiPSs), promoting the transformation of S to LiS; the Co sites accelerate the kinetics of the subsequent reduction of LiS. This tandem catalysis method not only enhances the conversion of the initial reactants but also provides additional support for the intermediates, thereby facilitating subsequent reactions to maximize capacity.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Pharmaceutical Technology, National Institute of Pharmaceutical Education and Research (NIPER) S.A.S. Nagar, Mohali, Punjab 160062, India. Electronic address:
Customized nano-biocatalysts of laccase have been made using nano-structured polyaniline viz. nano-fibers and nano-tubes, as immobilization supports and a simultaneous comparison between them has been made. Laccases are poly-phenol oxidases having tremendous utility concerning wider areas of application especially in the field of organic and drug syntheses.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Environmental Health, Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
An investigation into the degradation of ciprofloxacin (CIP) under visible light was carried out using an efficient photocatalyst, i.e., CoFeO@3D-TiO@GA, synthesized by doping CoFeO@three-dimensional-TiO into a hierarchical porous graphene aerogel.
View Article and Find Full Text PDFSmall
January 2025
Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.
Electrochemical reduction of CO is an efficient strategy for CO utilization under mild conditions. Tin (Sn) single-atom catalysts (SACs) are promising candidates due to their controllable CO/formate generation via asymmetric coordination engineering. Nevertheless, the factors that govern the selectivity remain unclear.
View Article and Find Full Text PDFAdv Mater
January 2025
Key Laboratory for Soft Chemistry and Functional Materials (Ministry of Education), School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
Limited by the activity-selectivity trade-off relationship, the electrochemical activation of small molecules (like O, N and CO) rapidly diminishes Faradaic efficiencies with elevated current densities (particularly at ampere levels). Nevertheless, some catalysts can circumvent this restriction in a two-electron oxygen reduction reaction (2e ORR), a sustainable pathway for activating O to hydrogen peroxide (HO). Here we report 2e ORR expedited in a fluorine-bridged copper metal-organic framework catalyst, arising from the water spillover effect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!