Tissue engineering of blood vessels with endothelial cells differentiated from mouse embryonic stem cells.

Cell Res

Department of Plastic and Reconstructive Surgery, Shanghai 9th People s Hospital, Shanghai 2nd Medical University, Shanghai Key Laboratory of Tissue Engineering, Shanghai 200011, China.

Published: October 2003

Endothelial cells (TEC3 cells) derived from mouse embryonic stem (ES) cells were used as seed cells to construct blood vessels. Tissue engineered blood vessels were made by seeding 8 106 smooth muscle cells (SMCs) obtained from rabbit arteries onto a sheet of nonwoven polyglycolic acid (PGA) fibers, which was used as a biodegradable polymer scaffold. After being cultured in DMEM medium for 7 days in vitro, SMCs grew well on the PGA fibers, and the cell-PGA sheet was then wrapped around a silicon tube, and implanted subcutaneously into nude mice. After 6~8 weeks, the silicon tube was replaced with another silicon tube in smaller diameter, and then the TEC3 cells (endothelial cells differentiated from mouse ES cells) were injected inside the engineered vessel tube as the test group. In the control group only culture medium was injected. Five days later, the engineered vessels were harvested for gross observation, histological and immunohistochemical analysis. The preliminary results demonstrated that the SMC-PGA construct could form a tubular structure in 6~8 weeks and PGA fibers were completely degraded. Histological and immunohistochemical analysis of the newly formed tissue revealed a typical blood vessel structure, including a lining of endothelial cells (ECs) on the lumimal surface and the presence of SMC and collagen in the wall. No EC lining was found in the tubes of control group. Therefore, the ECs differentiated from mouse ES cells can serve as seed cells for endothelium lining in tissue engineered blood vessels.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.cr.7290178DOI Listing

Publication Analysis

Top Keywords

blood vessels
16
endothelial cells
16
cells
13
differentiated mouse
12
pga fibers
12
silicon tube
12
cells differentiated
8
mouse embryonic
8
embryonic stem
8
stem cells
8

Similar Publications

: Caries or iatrogenic thermal trauma of the teeth have a significant impact on the dental pulp structure connected with stimulation of angiogenesis and lymphangiogenesis. Therefore, the aim of the study was to identify the difference in the rate of heat dissipation by vessels present in the dental pulp. : Freshly extracted healthy ( = 10) and carious ( = 14) molars and premolars were cut on a diamond saw and subjected to active thermographic examination and then subjected to lymphoscintigraphy and X-ray examination.

View Article and Find Full Text PDF

Objective: To develop a predictive model for microvascular invasion (MVI) in hepatocellular carcinoma (HCC) through radiomics analysis, integrating data from both enhanced computed tomography (CT) and magnetic resonance imaging (MRI).

Methods: A retrospective analysis was conducted on 93 HCC patients who underwent partial hepatectomy. The gold standard for MVI was based on the histopathological diagnosis of the tissue.

View Article and Find Full Text PDF

Simulated microgravity predisposes kidney to injury through promoting intrarenal artery remodeling.

FASEB J

January 2025

Department of Nephrology, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, National Clinical Research Center for Kidney Diseases, Nephrology Institute of the Chinese People's Liberation Army, Chinese PLA General Hospital, Beijing, China.

Spaceflight-induced multi-organ dysfunction affects the health of astronauts and the safety of in-orbit flight. However, the effect of microgravity on the kidney and the underlying mechanisms are unknown. In the current study, we used a hindlimb unweighting (HU) animal model to simulate microgravity and employed histological analysis, ischemia-reperfusion experiments, renal ultrasonography, bioinformatics analysis, isometric force measurement, and other molecular experimental settings to evaluate the effects of microgravity on the kidneys and the underlying mechanisms involved in this transition.

View Article and Find Full Text PDF

Background: Angiogenesis, the formation of new blood vessels from preexisting ones via capillary sprouting, is a crucial process in tumor growth and metastasis. As a tumor's angiogenic capacity increases, its microvasculature, measured by micro vessel density (MVD), also increases. This study aims to evaluate the expression of Vascular Endothelial Growth Factor (VEGF) and CD34 in oral epithelial dysplasia and oral squamous cell carcinoma through immunohistochemical methods.

View Article and Find Full Text PDF

Purpose: We present the case of a rare extrahepatic portocaval shunt that resulted in communication of the portal vein and the inferior vena cava (IVC) at the level between two right renal veins that was incidentally diagnosed with contrast-enhanced computed tomography (CECT) in an asymptomatic patient.

Methods: A woman in her sixties with abdominal pain and diarrhea of unclear origin underwent exploratory abdominal CECT.

Results: The CECT incidentally revealed an extrahepatic portocaval shunt, whereby a vessel arising from the portal vein superior to the confluence of the superior mesenteric and splenic veins drained into the posterior aspect of the IVC between two right renal veins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!