Reversing cerebellar long-term depression.

Proc Natl Acad Sci U S A

Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093-0647, USA.

Published: December 2003

The discovery of a postsynaptically expressed form of cerebellar parallel fiber-Purkinje cell long-term potentiation (LTP) raises the question whether this is the long-sought resetting mechanism for long-term depression (LTD). Extracellular monitoring of PC spikes enables stable prolonged recordings of parallel fiber-Purkinje cell synaptic efficacy. LTD, saturated by repeated induction protocols, can be reversed by a single round of postsynaptic LTP or nitric oxide (NO), enabling LTD to be reinduced. Conversely, after postsynaptic LTP has been saturated, one round of LTD permits fresh postsynaptic LTP. By contrast, after saturation of LTD, induction of presynaptic LTP or application of forskolin leaves LTD still saturated. Likewise, presynaptic LTP cannot be reversed by LTD. Therefore postsynaptic LTP mediated by NO without postsynaptic Ca2+ elevation, unlike presynaptic LTP mediated by cAMP, is a true counterbalance to LTD mediated by coincidence of NO plus postsynaptic Ca2+

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC307680PMC
http://dx.doi.org/10.1073/pnas.2636935100DOI Listing

Publication Analysis

Top Keywords

postsynaptic ltp
16
presynaptic ltp
12
long-term depression
8
parallel fiber-purkinje
8
fiber-purkinje cell
8
ltp
8
ltp mediated
8
postsynaptic ca2+
8
postsynaptic
6
reversing cerebellar
4

Similar Publications

The insular cortex (IC) processes various sensory information, including nociception, from the trigeminal region. Repetitive nociceptive inputs from the orofacial area induce plastic changes in the IC. Parvalbumin-immunopositive neurons (PVNs) project to excitatory neurons (pyramidal neurons [PNs]), whose inputs strongly suppress the activities of PNs.

View Article and Find Full Text PDF

At cellular and circuit levels, drug addiction is considered a dysregulation of synaptic plasticity. In addition, dysfunction of the glutamate transporter 1 (GLT-1) in the nucleus accumbens (NAc) has also been proposed as a mechanism underlying drug addiction. However, the cellular and synaptic impact of GLT-1 alterations in the NAc remain unclear.

View Article and Find Full Text PDF

: Omega-3 long-chain polyunsaturated fatty acids (PUFAs) support brain cell membrane integrity and help mitigate synaptic plasticity deficits. The endocannabinoid system (ECS) is integral to synaptic plasticity and regulates various brain functions. While PUFAs influence the ECS, the effects of omega-3 on the ECS, cognition, and behavior in a healthy brain remain unclear.

View Article and Find Full Text PDF

β-adrenergic receptor-induced E-S potentiation in the dorsal and ventral hippocampus.

Front Synaptic Neurosci

December 2024

Laboratory of Physiology, Department of Medicine, University of Patras, Patras, Greece.

β-adrenergic receptors (β-ARs) play a critical role in modulating learning, memory, emotionality, and long-term synaptic plasticity. Recent studies indicate that β-ARs are necessary for long-term potentiation (LTP) induction in the ventral hippocampus under moderate synaptic activation conditions that do not typically induce LTP. To explore potential dorsoventral differences in β-AR-mediated effects, we applied the β-AR agonist isoproterenol (10 μM, 30 min) to dorsal and ventral hippocampal slices, recording field excitatory postsynaptic potentials (fEPSPs) and population spikes (PSs) from the CA1 region.

View Article and Find Full Text PDF

Vascular cognitive impairment and dementia (VCID), resulting from chronic cerebral hypoperfusion, represent the second most prevalent form of dementia globally. Aerobic exercise is widely acknowledged as an effective intervention for various cognitive disorders. This study utilized a bilateral common carotid artery stenosis (BCAS) model to investigate whether aerobic exercise promotes cognitive recovery through the Annexin-A1 (ANXA1)/mitogen-activated protein kinase (MAPK) axis in BCAS mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!