Hypochlorous acid and low serum paraoxonase activity in haemodialysis patients: an in vitro study.

Nephrol Dial Transplant

Department of Medical and Surgical Sciences, University of Otago Medical School, PO Box 913, Dunedin, New Zealand.

Published: January 2004

Background: Serum paraoxonase 1 (PON1) is an oxidant-sensitive enzyme associated with high-density lipoprotein (HDL) that inhibits the atherogenic oxidation of low-density lipoprotein (LDL). In haemodialysis patients, production of reactive oxygen species, such as hypochlorous acid (HOCl) and hydrogen peroxide, is increased and serum PON1 arylesterase is abnormally low. We have examined the effect of HOCl and the uraemic milieu on serum PON1 arylesterase activity and the ability of HDL to inhibit LDL oxidation in vitro.

Methods: Serum was incubated with HOCl, hydrogen peroxide and products of HOCl reaction with excess cysteine, lysine and taurine and then serum PON1 arylesterase and serum protein tryptophan fluorescence were measured. The ability of plasma HDL fractions isolated by a dextran-sulphate method, to protect LDL from mild oxidation in air, was determined by a fluorimetric method using oxidation of 2,7-dichlorofluorescein (DCFH).

Results: Incubation of healthy serum with HOCl in the range 6.5-32.9 mmol/l resulted in a linear decrease in serum PON1 arylesterase activity to 40% of that without HOCl and a parallel decrease in protein tryptophan fluorescence. The HOCl-induced decrease in serum PON1 activity was completely removed by reaction of HOCl with a 2.7-fold excess of alpha-amino acids but not taurine. In serum incubated for 1 week, the decrease in serum PON1 activity was significantly (P = 0.04) less while the increase in protein fluorescent advanced glycation end-products was significantly larger (P = 0.01) in haemodialysis patients compared with healthy subjects. The mean decrease in mild oxidation of LDL was not significantly different on addition of HDL-rich fractions from haemodialysis patients (100 +/- 6%, n = 7) and healthy subjects (95 +/- 6%, n = 7) or on addition of the HDL-rich fraction from plasma treated with 0.95 mmol/l HOCl (95%) and control HDL (96%). The fraction rich in HDL and other high molecular weight compounds from plasma that had been incubated with increasing HOCl concentrations up to 1.9 mmol/l significantly (P = 0.001) increased (471%) the oxidation of DCFH.

Conclusions: These results suggest that high concentrations of HOCl that severely oxidize serum proteins and tryptophan residues in the active site of PON1 are required to decrease PON1 arylesterase activity in serum. In haemodialysis patients, overproduction of HOCl that leads to high concentrations of severely oxidized proteins and increased oxidants in plasma might also contribute to low serum PON1 arylesterase activity, but does not appear to impair the ability of an HDL molecule to protect LDL from mild oxidation.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ndt/gfg484DOI Listing

Publication Analysis

Top Keywords

serum pon1
28
pon1 arylesterase
24
haemodialysis patients
20
arylesterase activity
16
serum
15
mild oxidation
12
decrease serum
12
hocl
11
pon1
10
hypochlorous acid
8

Similar Publications

Objective: Dysregulation of lipid metabolism can be one of the pathophysiological mechanisms linking high-density lipoprotein cholesterol (HDL-C) dysfunction to obesity. The aim of the study is to show possible changes in lipid metabolism with atherogenic indices in obese patients after sleeve gastrectomy (SG) surgery.

Method: Thirty patients who had SG surgery for obesity were included in the prospective study.

View Article and Find Full Text PDF

The role of oxidative stress and antioxidants in older individuals with osteoporotic hip fractures.

Ulus Travma Acil Cerrahi Derg

January 2025

Department of Biochemistry, Gulhane Faculty of Pharmacy, University of Health Sciences, Ankara-Türkiye.

Background: Osteoporosis is characteristically defined as a decrease in bone density and mass, accompanied by the deterioration of bone structure, which increases bone fragility and the risk of fractures. Osteoporosis frequently develops with age. In high-risk populations, oxidative damage is a common pathological condition.

View Article and Find Full Text PDF

Objective: Sulfur mustard (SM) is an important chemical warfare agent. The mechanisms underlying SM toxicity have not been completely elucidated. However, oxidative stress and the subsequent damage to macromolecules have been considered ascrucial steps in SM toxicity.

View Article and Find Full Text PDF

Paraoxonase-1 Is a Pivotal Regulator Responsible for Suppressing Allergic Airway Inflammation Through Adipose Stem Cell-Derived Extracellular Vesicles.

Int J Mol Sci

November 2024

Department of Otorhinolaryngology and Biomedical Research Institute, Pusan National University School of Medicine, Pusan National University Hospital, Busan 50612, Republic of Korea.

Although adipose stem cell (ASC)-derived extracellular vesicles (EVs) are as effective as ASCs in the suppression of Th2 cell-mediated eosinophilic inflammation, the role of identified pulmonary genes has not been well documented. Thus, we assessed the immunomodulatory effects of paraoxonase-1 (PON1) on allergic airway inflammation in a mouse model of asthma. Five-week-old female C57BL/6 mice were sensitized to ovalbumin (OVA) by intraperitoneal injection and challenged intranasally with OVA.

View Article and Find Full Text PDF

This research elucidated the hypoglycemic effect correlated with DNA-protective and antioxidative activity of Lasia spinosa stem aqueous extract (LSSAE) using streptozotocin-induced type 2 diabetic rat models. LSSAE, characterized by phytochemical screening, gas chromatography-mass spectroscopy (GC-MS), and FTIR analyses, was investigated for its DNA-protective activity by exposing PBR322 plasmid DNA to Fenton's reagents. Long Evans rats, treated by LSSAE, were found to be improved for body weight, fasting blood glucose level, and oral glucose load.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!