Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In vitro studies using immortalized GT1 cells suggest that hypothalamic astrocytes employ TGFbeta(1) to directly regulate the secretion of GnRH, the neurohormone that controls sexual maturation and adult reproductive function. However, whether such astrocyte-GnRH neuron signaling occurs in vivo is not clear. In the present study, we used in situ hybridization and immunohistochemistry to determine whether astrocytes and GnRH neurons express the molecular components necessary to set in motion communication processes involving TGFbeta(1) signaling. Double-labeling experiments showed that astrocytes in the male rat preoptic region (POA) expressed TGFbeta(1) mRNA and that GnRH perikarya were often found in close association with TGFbeta(1) mRNA-expressing cells. In addition, GnRH neuronal cell bodies in the POA expressed both type II TGFbeta receptors (TGFbeta-RII), which selectively bind TGFbeta, and Smad2/3, one of the primary transducers of TGFbeta signaling, suggesting that they are fully capable of responding directly to TGFbeta(1) stimulation. Consistent with this hypothesis, incubation of POA explants with TGFbeta(1) caused a significant, dose-dependent decrease in GnRH mRNA expression in individual neurons. This effect was observed within 1 h after TGFbeta(1)-treatment and was inhibited by addition of the soluble form of TGFbeta-RII to the incubation medium. In contrast, whereas both TGFbeta(1) and TGFbeta-RII mRNAs were abundantly expressed in both glial cells and capillaries in the median eminence, the projection field of GnRH neurons, TGFbeta-RII immunoreactivity was mainly restricted to the processes of tanycytes and did not colocalize with GnRH-immunoreactive fibers. This observation supports previous in vivo studies showing that TGFbeta(1) is unable to directly modulate decapeptide release from GnRH nerve terminals. Thus, astrocyte-derived TGFbeta(1) may directly influence GnRH expression and/or secretion in vivo by acting on the perikarya, but not the terminals, of GnRH neurons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/en.2003-1468 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!