Objective: Osteopontin is upregulated in the diabetic vascular wall and in vascular smooth muscle cells cultured under high glucose concentration. In the present study, we analyzed the mechanism of high glucose-induced upregulation of osteopontin in cultured rat aortic smooth muscle cells.
Methods And Results: We found that an inhibitor of Rho-associated protein kinase, Y-27632, suppressed osteopontin mRNA expression under high glucose concentration. Transfection of cells with a constitutive active Rho mutant, pSRalpha-myc-RhoDA, enhanced osteopontin mRNA expression. Furthermore, incubation of cells under high glucose concentration activated Rho, indicating that Rho/Rho kinase pathway mediates high-glucose-stimulated osteopontin expression. Treatment of cells with an inhibitor of protein kinase C, GF109203X, and azaserine, an inhibitor of the hexosamine pathway, suppressed high glucose-induced Rho activation. Glucosamine treatment was shown to activate Rho. Treatment of cells with an inhibitor of MEK1, PD98059, suppressed osteopontin mRNA expression under high glucose concentration. Incubation of cells under high glucose concentration activated ERK. Finally, transfection of cells with pSRalpha-myc-RhoDA also activated ERK.
Conclusions: In conclusion, our present findings support a notion that Rho/Rho kinase pathway functions downstream of protein kinase C and the hexosamine pathways and upstream of ERK in mediating high-glucose-induced upregulation of osteopontin expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.ATV.0000112012.33770.2a | DOI Listing |
Front Pharmacol
January 2025
Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
Background: Fatty Liver Disease (FLD) progresses from steatosis to steatohepatitis and, if left untreated, can lead to irreversible conditions such as cirrhosis and hepatocarcinoma. The etiology of FLD remains unclear, but factors such as overconsumption, poor diet, obesity, and diabetes contribute to its development. Palmitic acid (PA) plays a significant role in FLD progression by inducing apoptosis, inflammation, oxidative stress, and endoplasmic reticulum (ER) stress in hepatocytes.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland.
Background: Continuous glucose monitoring (CGM) improves glycemic control and quality of life. Data on glycemic indices and fear of hypoglycemia (FoH) in newly diagnosed T1DM patients are limited.
Aim: To assess the impact of initiating intermittently scanned CGM (isCGM) within 1-6 months of diagnosis on glycemic control and FoH in adults with T1DM.
Front Cardiovasc Med
January 2025
Cardiology Service, Hospital Universitario de La Princesa, Madrid, Spain.
Introduction: Vericiguat, an oral stimulator of soluble guanylate cyclase, reduces cardiovascular mortality and hospitalisations in patients with heart failure (HF) and reduced ejection fraction, as demonstrated in the VICTORIA trial. This study assessed the real-world use of vericiguat.
Material And Methods: This cross-sectional, prospective and multicenter registry (VERISEC) included 776 patients from 43 centres in Spain between December 2022 and October 2023.
Light-driven biotransformations in recombinant cyanobacteria benefit from the atom-efficient regeneration of reaction equivalents like NADPH from water and light by oxygenic photosynthesis. The self-shading of photosynthetic cells throughout the reaction volume, along with the need for extended light paths, limits adequate light supply and significantly restricts the potential for upscaling. Here, we present a flat panel photobioreactor (1 cm optical path length) as a scalable system to provide efficient illumination at high cell densities.
View Article and Find Full Text PDFIran J Basic Med Sci
January 2025
Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
Objectives: The close relationship of proto-oncogenes to myocardial hypertrophy has long been recognized, and cardiac hypertrophy leads to heart failure (HF). However, whether proviral insertion of Moloney virus 3 kinase (Pim3), a proto-oncogene, contributes to cardiac hypertrophy in diabetes mellitus (DM) remains unknown. This study aims to investigate whether Pim3 is involved in DM-induced cardiac hypertrophy and HF and to elucidate its underlying mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!