Senescence alters blood flow responses to acute heat stress.

Am J Physiol Heart Circ Physiol

Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA.

Published: April 2004

AI Article Synopsis

  • Research shows that older Fischer-344 rats (24 months) have significantly reduced sympathetic nerve discharge (SND) responses to heating compared to younger ones (3 and 12 months).
  • During controlled heating, blood flow to various organs was measured, revealing that older rats had decreased vascular conductance in the kidneys, stomach, and pancreas before heating even began.
  • The findings indicate that aging diminishes vascular responses to heat stress, which may have significant implications for how older individuals regulate blood flow during temperature changes.

Article Abstract

Renal and splanchnic sympathetic nerve discharge (SND) responses to heating are significantly reduced in senescent compared with young Fischer-344 (F344) rats (Kenney MJ and Fels RJ. Am J Physiol Regul Integr Comp Physiol 283: R513-R520, 2002). However, the functional significance of this finding is not known. We tested the hypothesis that blood flow distribution profiles to heating are altered in senescent (24 mo old) compared with mature (12 mo old) and young (3 mo old) F344 rats. Visceral organ, skeletal muscle, and tail blood flows were determined with the radionuclide-tagged microsphere technique before (control, 38 degrees C) and during heating that increased body temperature to 41 degrees C in anesthetized F344 rats. Vascular conductance in the kidney, stomach, large intestine, pancreas, spleen, and tail was significantly reduced during control before heating in senescent compared with young F344 rats. Heating significantly decreased kidney, stomach, small and large intestine, and pancreas vascular conductance in young and mature but not senescent F344 rats. Vascular conductance at 41 degrees C in the kidney and small intestine was significantly lower and in the stomach tended to be lower in young compared with senescent rats. Splenic conductance increased during heating in young and senescent rats but was highest in young rats. Tail conductance during heating was significantly increased in young rats but remained unchanged in mature and senescent rats. These results demonstrate a marked attenuation in heating-induced vascular conductance changes in senescent rats, suggesting an important functional consequence for the attenuated SND responses to heating in aged rats.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.00857.2003DOI Listing

Publication Analysis

Top Keywords

f344 rats
20
vascular conductance
16
senescent rats
16
senescent compared
12
rats
12
blood flow
8
snd responses
8
heating
8
responses heating
8
senescent
8

Similar Publications

Genetic Characteristics of the Rat Fibroblast Cell Line Rat-1.

Cells

December 2024

Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH, University Hospital Aachen, D-52074 Aachen, Germany.

The Rat-1 cell line was established as a subclone of the parental rat fibroblastoid line F2408, derived from Fisher 344 rat embryos. Rat-1 cells are widely used in various research fields, especially in cancer biology, to study the effects of oncogenes on cell proliferation. They are also crucial for investigating signal transduction pathways and play a key role in drug testing and pharmacological studies due to their rapid proliferation.

View Article and Find Full Text PDF

Objective: To test the safety and efficacy of combination treatment for pleural mesothelioma (PM) with intracavitary cisplatin-fibrin (cis-fib) plus hemithoracic irradiation (IR) applied after lung-sparing surgery in an orthotopic immunocompetent rat model.

Methods: We randomized male F344 rats into 5 groups: cis-fib (n = 9), 10 Gy IR (n = 6), 20 Gy IR (n = 9), cis-fib+10 Gy IR (n = 6), and cis-fib+20 Gy IR (n = 9). Subpleural tumor implantation was performed on day 0 with 1 million syngeneic rat mesothelioma cells (IL45-luciferase).

View Article and Find Full Text PDF

A potential link has been reported between skin exposure to aromatic amines, such as ortho-toluidine (OT) and 3,3'-dichloro-4,4'-diaminodiphenylmethane (MOCA), and bladder cancer cases observed in Japanese chemical factories. To evaluate this association, we explored the permeability of OT and MOCA through pig skin and investigated the subsequent changes in plasma and urine concentrations in rats following percutaneous exposure. Employing Yucatan micropig skin, we first executed a permeability test by affixing the skin to a diffusion cell and applying 14C-labeled OT or MOCA.

View Article and Find Full Text PDF

Background: Epidemiological studies report associations of drinking water disinfection byproducts (DBPs) with adverse health outcomes, including birth defects. Here, we used a rat model susceptible to pregnancy loss (full-litter resorption; FLR) and eye malformations (anophthalmia, microphthalmia) to test 11 DBPs, including trihalomethanes, haloacetic acids (HAAs), and nitrogen-containing DBPs (N-DBPs).

Methods: Timed-pregnant F344 rats received gavage doses of chloroform, chlorodibromomethane, iodoform, chloroacetic acid, bromoacetic acid, dibromoacetic acid (DBA), diiodoacetic acid (DIA), trichloroacetic acid (TCA), dibromonitromethane, and iodoacetonitrile on gestation days (GD) 6-10.

View Article and Find Full Text PDF

Aims: The term ovarian carcinoma (OC) refers to a heterogeneous collection of five distinct diseases known as histotypes. While histotype-specific treatment is still a clinical challenge in OC, well-characterized models are required for testing new therapeutic strategies. We employed OncoTherad® (MRB-CFI-1), an interferon (IFN-γ)-stimulating nano-immunotherapy mediated by Toll-like receptors (TLR) 2/4, in association or not with Erythropoietin (EPO) in a chemically-induced ovarian cancer model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!