A stator is proposed as necessary to prevent futile rotation of the F(1) catalytic sector of mitochondrial ATP synthase (mtATPase) during periods of ATP synthesis or ATP hydrolysis. Although the second stalk of mtATPase is generally believed to fulfil the role of a stator capable of withstanding the stress produced by rotation of the central rotor, there is little evidence to directly support this view. We show that interaction between two candidate proteins of the second stalk, OSCP and subunit b, fused at their C-termini to GFP variants and assembled into functional mtATPase can be monitored in mitochondria using fluorescence resonance energy transfer (FRET). Substitution of native OSCP with a variant containing a glycine 166 to asparagine (G166N) substitution yielded a metastable complex. In contrast to the enzyme containing native OSCP, FRET could be irreversibly lowered for the enzyme containing G166N at a rate that correlated closely with the rate of enzyme activity (ATP hydrolysis). The non-hydrolysable ATP analogue, AMP-PCP did not have this effect. We conclude that two candidate proteins of the stator stalk, OSCP and b, are subject to stresses during enzyme catalytic activity commensurate with their role as a part of a stator stalk.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbabio.2003.09.013 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Cardiology, the First hospital of Shanxi Medical University, and MOE Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China. Electronic address:
Bagaza virus (BAGV) is a mosquito-borne flavivirus and has caused significant avian death in many regions, and also garnered recognition as a significant human pathogen causing diseases like encephalitis. The genome of BAGV encodes ten proteins including three structural proteins and seven nonstructural proteins. The C-terminus of the BAGV NS3 helicase serves as a helicase during BAGV replication, aiding in ATP hydrolysis and unwinding of double-stranded RNA.
View Article and Find Full Text PDFiScience
January 2025
Department of Experimental Medicine, University of Genova, Viale Benedetto XV/3, 16132 Genoa, Italy.
The vacuolar ATPase (v-ATPase) is essential for acidification of intracellular organelles, including synaptic vesicles. Its activity is controlled by cycles of association and dissociation of the ATP hydrolysis (V) and proton transport (V) multi-protein subunits. Mutations in genes coding for both v-ATPase subunits and TBC1D24 cause neurodevelopmental disorders with overlapping syndromes; therefore, it is important to investigate their potentially interrelated functions.
View Article and Find Full Text PDFNat Commun
January 2025
DNA Replication Group, Institute of Clinical Science, Imperial College London, London, UK.
The eukaryotic helicase MCM2-7, is loaded by ORC, Cdc6 and Cdt1 as a double-hexamer onto replication origins. The insertion of DNA into the helicase leads to partial MCM2-7 ring closure, while ATP hydrolysis is essential for consecutive steps in pre-replicative complex (pre-RC) assembly. Currently it is unknown how MCM2-7 ring closure and ATP-hydrolysis are controlled.
View Article and Find Full Text PDFPLoS One
December 2024
College of Agriculture, Xinyang Agriculture and Forestry University, Xinyang, China.
The ATP-dependent zinc metalloprotease (FtsH) protein gene family is essential for plant growth, development, and stress responses. Although FtsH genes have been identified in various plant species, the FtsH gene family in wheat (Triticum aestivum) remains unstudied. In this study, we identified 11 TaFtsH genes with uneven chromosomal distribution, significant variations in gene sequence length, and differing intron numbers among individual members.
View Article and Find Full Text PDFSubcell Biochem
December 2024
Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
Viruses shield their genetic information by enclosing the viral nucleic acid inside a protein shell (capsid), in a process known as genome packaging. Viruses follow essentially two main strategies to package their genome: Either they co-assemble their genetic material together with the capsid protein or an empty shell (procapsid) is first assembled and then the genome is pumped inside the capsid by a molecular motor that uses the energy released by ATP hydrolysis. During packaging the viral nucleic acid is highly condensed through a meticulous arrangement in concentric layers inside the capsid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!