A novel approach to develop anti-HIV drugs: adapting non-nucleoside anticancer chemotherapeutics.

Antiviral Res

NovoMed Pharmaceuticals, Inc., PO Box 900, Germantown, MD 20875, USA.

Published: January 2004

Some anticancer drugs, but not all, inhibit replication of human immunodeficiency virus (HIV) and thus, exhibit a therapeutic potential. Such drugs, unlike the traditional HIV enzyme inhibitors, could suppress HIV strains that are resistant to inhibitors of viral enzymes, decrease proviral burden in vivo, or reduce reservoirs of infection via killing infected cells. Thus, they may be an effective adjunct therapy or perhaps result in a cure. The incidence of HIV infection and AIDS mortalities continue to increase worldwide, including the United States and parts of Africa, with a parallel increase in a number of other manifestations, including AIDS defining malignancies. The basis for continual spread of HIV presumably in large part stems from the viral resistance to previously successful drugs and the lack of curative antiretroviral drugs. To reverse these trends, other approaches for AIDS therapy must be developed. One possibility is the development of potent anticancer drugs, that exhibit anti-HIV activities. At least four chemically and pharmacologically distinct classes of anticancer drugs, i.e. certain cyclin-dependent kinase inhibitors (CDKIs), topoisomerase 1 enzyme (top 1) inhibitors, non-nucleoside antimetabolites, and estrogen receptor ligands are promising candidates. These drugs, at high doses are used for cancer therapy; at lower concentrations they exhibit anti-HIV activities in cultured cells. While the antiretroviral and the anticancer activities of the cdk inhibitor flavopiridol appear to be mutually exclusive and unrelated in cells and animal model(s) of HIV disease, the top 1 inhibitor 9-nitrocamptothecin, as well as the cdk-inhibitor roscovitine inhibit replication of HIV via selective sensitization of HIV-infected cells to apoptosis. In contrast, the inhibitory effects of these compounds are different from other cancer therapeutics that, at toxic concentrations, activate HIV either in cultured cells (such as certain ingenol and butyrate derivatives) and/or in patients (such as the widely used cyclophosmamide and cisplatin). This quality may lead to the eradication of proviral reservoirs, which is not accomplished by the currently available antiretroviral drugs. In this review, relevant available clinical and in vitro data that either support or discourage using certain anticancer drugs for treatment of HIV disease, and the rationales for developing novel antiretroviral drugs that may target infected cells rather than viral proteins are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.antiviral.2003.09.004DOI Listing

Publication Analysis

Top Keywords

anticancer drugs
16
antiretroviral drugs
12
drugs
11
hiv
9
inhibit replication
8
infected cells
8
exhibit anti-hiv
8
anti-hiv activities
8
cultured cells
8
hiv disease
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!