Spectroscopic and theoretical studies on nickel(II) complex of maleonitriledithiolate and 2,2'-bipyridine.

Spectrochim Acta A Mol Biomol Spectrosc

Department of Chemistry, Wuhan University, Hubei 430072, Wuhan, China

Published: January 2004

The complete IR spectra of the title complex Ni(mnt)(bpy) (mnt=maleonitriledithiolate, bpy=2,2'-bipyridine) and a new method to analyze vibrational spectra for such a complicated metal complex are reported in this paper. The molecular geometry, binding, electronic structure and spectroscopic property of it have been studied in detail by theoretical calculations. The geometry optimization from PM3 calculations give that this molecule is of a planar structure with the symmetry point group C(2v) and its ground state is the spin triplet state. The vibrational and electronic spectra were calculated by PM3 and ZINDO/S methods, respectively. The scientific method of analyzing vibrational spectra is established herein by giving main fixed points and pivotal vibrational units. Besides the regular symbols, the new defined symbols eta and M play an important role in describing the vibration modes accurately and vividly.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1386-1425(03)00253-1DOI Listing

Publication Analysis

Top Keywords

vibrational spectra
8
spectroscopic theoretical
4
theoretical studies
4
studies nickelii
4
nickelii complex
4
complex maleonitriledithiolate
4
maleonitriledithiolate 22'-bipyridine
4
22'-bipyridine complete
4
spectra
4
complete spectra
4

Similar Publications

Absorption spectra of PS in the ultraviolet and infrared region.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 China. Electronic address:

The line list is essential for accurately modeling various astrophysical phenomena, such as stellar photospheres and atmospheres of extrasolar planets. This paper introduces a new line database for the PS molecule spanning from the ultraviolet to the infrared regions, covering wavenumbers up to 45000 cm and containing over ten million transitions between 150,458 states with total angular momentum J < 160. Accurate line intensities for rotational, vibrational and electronic transitions are generated by using the general purpose variational code DUO.

View Article and Find Full Text PDF

Electrospinning is a versatile technique for obtaining nano/micro fibers which are able to significantly change the active properties of composite materials and bring in new dimensions to agri-food applications. Composite bio-based packaging materials obtained from whey proteins, functionalized with thyme essential oil (TEO) and reinforced by electrospun polylactic acid (PLA) fibers, represent a promising solution for developing new active food packaging using environmentally friendly materials. The aim of this study is to obtain and characterize one-side-active composite films covered with a PLA fiber mat: (i) WF/G1, WF/G2, and WF/G3 resulting from electrospinning with one needle at different electrospinning times of 90, 150, and 210 min, respectively, and (ii) WF/G4 obtained with two face-to-face needles after 210 min of electrospinning.

View Article and Find Full Text PDF

Raman Signature of Stripe Domains in Monolayer WMoS Alloys.

ACS Appl Mater Interfaces

January 2025

Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

We study the Raman signature of stripe domains in monolayer WMoS alloys, characterized using experimental techniques and density functional theory (DFT) calculations. These stripe domains were found in star-shaped monolayer WS exhibiting a high concentration of molybdenum (Mo) atoms in its central region, and unique Raman peaks that were not previously reported. We attribute these peaks to the splitting of the original doubly degenerate E modes, arising from the lower symmetry of the W-Mo stripe domains.

View Article and Find Full Text PDF

Two-dimensional infrared (2D IR) spectroscopy is a powerful technique for measuring molecular heterogeneity and dynamics with a high spatiotemporal resolution. The methods can be applied to characterize specific residues of proteins by incorporating frequency-resolved vibrational labels. However, the time scale of dynamics that 2D IR spectroscopy can measure is limited by the vibrational label's excited-state lifetime due to the decay of 2D IR absorption bands.

View Article and Find Full Text PDF

Electronic spectra for OThF have been recorded using fluorescence excitation and two-photon resonantly enhanced ionization techniques. Multiple vibronic bands were observed in the 340-460 nm range. Dispersed fluorescence spectra provided ground state vibrational constants and evidence of extensive vibronic state mixing at higher excitation energies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!