We have identified a new binding partner of the TGFbeta (transforming growth factor-beta)-activated protein kinase (TAK1), termed TAB3 (TAK1-binding protein-3), which shares 48% amino acid sequence identity with TAB2. Our results indicate that two distinct TAK1 complexes are present in cells. One comprises TAK1 complexed with TAB1 and TAB2, and the other TAK1 complexed with TAB1 and TAB3. Both complexes are activated in response to tumour necrosis factor-alpha or interleukin-1 in human epithelial KB cells or bacterial lipopolysaccharide in RAW264.7 macrophages, and are subject to feedback control by stress-activated protein kinase 2a (SAPK2a; also called p38alpha). The electrophoretic mobility of TAB2 and TAB3 decreases in response to these agonists or osmotic shock, and is reversed by treatment with protein phosphatase-1. The decrease in mobility of TAB3 is prevented if the cells are incubated with SB 203580 before stimulation, but treatment with SB 203580 produces forms of TAB2 with a mobility intermediate between that observed for TAB2 in unstimulated and stimulated cells. Similar results were obtained in embryonic fibroblasts from mice deficient in SAPK2a/p38alpha. Our results indicate that TAB3 is phosphorylated via the SAPK2a/p38alpha pathway, whereas TAB2 is phosphorylated at two or more sites by both an SAPK2a/p38alpha-dependent and an SB 203580-independent kinase. The SAPK2a/p38alpha-mediated phosphorylation of TAB2 and TAB3 may contribute to the SAPK2a/p38alpha-mediated feedback control of TAK1 activity that also involves the phosphorylation of TAB1. We also show that the agonist-induced activation of TAK1 complexes requires the phosphorylation of the TAK1 catalytic subunit at a serine/threonine residue(s).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1223947 | PMC |
http://dx.doi.org/10.1042/BJ20031794 | DOI Listing |
Cell Biol Toxicol
January 2025
Department of Radiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China.
Thyroid cancer (THCA) is an increasingly common malignant tumor of the endocrine system, with its incidence rising steadily in recent years. For patients who experience recurrence or metastasis, treatment options are relatively limited, and the prognosis is poor. Therefore, exploring new therapeutic strategies has become particularly urgent.
View Article and Find Full Text PDFProtoplasma
January 2025
Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India.
Stay-green (SG) and stem reserve mobilization (SRM) are two significant mutually exclusive traits, which contributes to grain-filling during drought and heat stress in wheat. The current research was conducted in a genome-wide association study (GWAS) panel consisting of 278 wheat genotypes of advanced breeding lines to find the markers linked with SG and SRM traits and also to screen the superior genotypes. SG and SRM traits, viz.
View Article and Find Full Text PDFCancer Discov
January 2025
Salk Institute for Biological Studies, La Jolla, CA, United States.
Identities of functional pSer/Thr.Pro protein substrates of the PIN1 prolyl isomerase and its effects on downstream signaling in bladder carcinogenesis remain largely unknown. Phenotypically, we found that PIN1 positively regulated bladder cancer cell proliferation, cell motility and urothelium clearance capacity in vitro and controlled tumor growth and potential metastasis in vivo.
View Article and Find Full Text PDFASN Neuro
January 2025
School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
We previously identified a role for dAuxilin (dAux), the fly homolog of Cyclin G-associated kinase, in glial autophagy contributing to Parkinson's disease (PD). To further dissect the mechanism, we present evidence here that lack of glial dAux enhanced the phosphorylation of the autophagy-related protein Atg9 at two newly identified threonine residues, T62 and T69. The enhanced Atg9 phosphorylation in the absence of dAux promotes autophagosome formation and Atg9 trafficking to the autophagosomes in glia.
View Article and Find Full Text PDFCancer Res Commun
January 2025
Zentalis Pharmaceuticals, Inc, San Diego, CA, United States.
KRAS is a potent oncogenic driver which results in downstream hyperactivation of MAPK signaling, while simultaneously increasing replication stress (RS) and accumulation of DNA damage. KRASG12C mutations are common and targetable alterations. Therapeutic inhibition of KRASG12C and eventual resistance to these inhibitors are also known to drive RS and DNA damage through adaptive mechanisms that maintain addiction to high MAPK signaling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!