On-chip hydrodynamic chromatography separation and detection of nanoparticles and biomolecules.

Anal Chem

MESA+ Research Institute, P.O. Box 217, 7500 AE Enschede, The Netherlands, and Department of Chemical Engineering, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands.

Published: December 2003

For the first time, on-chip planar hydrodynamic chromatography is combined with UV absorption detection. This technique is suitable for size characterization of synthetic polymers, biopolymers, and particles. Possible advantages of an on-chip hydrodynamic chromatography system over conventional techniques, such as size exclusion chromatography, and field-flow fractionation are fast analysis, high efficiency, reduced solvent consumption, and easy temperature control. The hydrodynamic separations are performed in a planar configuration realized in fused silica using a mixture of fluorescent and nonfluorescent polystyrene particles with sizes ranging from 26 to 155 nm. The planar chip configuration consists of a 1-microm-high, 0.5-mm-wide, and 69-mm-long channel, an integrated 150-pL injection structure, and a 30-microm-deep and 30-microm-wide detection cell, suitable for UV absorption detection. By combination of the separation data obtained in the new fused-silica chip with those obtained using a previously presented planar hydrodynamic chromatography chip, which was realized using silicon and glass microtechnology, a description of the retention and dispersion behavior of planar hydrodynamic chromatography is obtained. Especially the influence of the sidewalls on the dispersion is investigated. Furthermore a hydrodynamic separation within 70 s of several biopolymers is shown in the glass-silicon chip.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac034663lDOI Listing

Publication Analysis

Top Keywords

hydrodynamic chromatography
20
planar hydrodynamic
12
on-chip hydrodynamic
8
absorption detection
8
chromatography
6
hydrodynamic
6
planar
5
chromatography separation
4
detection
4
separation detection
4

Similar Publications

Simulation of the performance of pillar array columns using the pore-throat ratio as efficiency descriptor.

J Chromatogr A

January 2025

Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom.

Traditional packed beds in chromatography suffer from increased band broadening due to the random nature of packing, leading non-ideal fluid flow and channeling. To address these challenges, pillar array columns have been developed, offering improved performance over random packing thanks to their homogenous fluid profiles. The study aims to i) evaluate fluid dynamics and chromatographic performance across different PAC morphologies, ii) establish the influence of column morphology on performance, and iii) assess the correlation between chromatographic performance and hydrodynamic parameters.

View Article and Find Full Text PDF

Lignin Molar Mass Estimation by Dispersion Analysis.

Macromol Rapid Commun

January 2025

Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Copenhagen, 1958, Denmark.

Lignin's complex and heterogeneous molecular structure poses significant challenges for accurate molar mass determination, which is important for its utilization in industrial applications, such as biochemicals, nanoparticles, biobased binders, and biofuels. This study evaluates the potential of Taylor Dispersion Analysis (TDA) for measuring lignin size and compares it with size-exclusion chromatography (SEC) and diffusion-ordered spectroscopy (DOSY) NMR. Using dual Gaussian fitting, flow-induced dispersion analysis (FIDA), a TDA-based method, successfully determined the average hydrodynamic radii of multiple species in solvent-fractionated soda grass lignin samples, producing results consistent with DOSY.

View Article and Find Full Text PDF

The exact moment method for the determination of the dispersion tensor in retentive porous media has been adopted to compute the dispersion coefficients, the plate height curves and the kinetic performance factors of eight different 3D printable stationary phases based on triply periodic minimal surfaces (TPMS). The two cases in which the stationary phase is impermeable (hydrodynamic dispersion) or superficially retentive have been analyzed in detail. The Carman-Kozeny relationship between permeability K, hydraulic diameter d and hydrodynamic tortuosity τ holds true for all the geometries investigated with a unique shape coefficient K.

View Article and Find Full Text PDF

Hydrodynamic characterization of the FtsZ protein from Escherichia coli demonstrates the presence of linear and lateral trimers.

Anal Biochem

April 2025

Laboratorio de Biología Estructural y Molecular BEM, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425 Ñuñoa, Santiago, 7800003, Chile; Laboratorio de Biotecnología Vegetal y Ambiental Aplicada, Universidad Tecnológica Metropolitana, Santiago, Chile.

FtsZ is a bacterial protein that plays a crucial role in cytokinesis by forming the Z-ring. This ring acts as a scaffold to recruit other division proteins and guide the synthesis of septal peptidoglycan, which leads to cell constriction. In its native state, the FtsZ protein from Escherichia coli (EcFtsZ) is a multi-oligomer comprising dimers, trimers, tetramers, and hexamers in a dynamic self-association equilibrium depending on its concentration.

View Article and Find Full Text PDF

The requirement for the development of advanced technologies is the need to create new functional thermostable soluble polysilsesquioxanes. Combining the potential of organosilicon chemistry and the chemistry of heterocyclic compounds is a promising direction for the formation of novel organosilicon polymer systems with new properties and new possibilities for their practical application. Using the classical method of hydrolysis and polycondensation of previously unknown trifunctional (trimethoxysilylpropyl)glutarimide in the presence or absence of an acid or base catalyst, a universal approach to the formation of new thermostable soluble polysilsesquioxanes with glutarimide side-chain groups is proposed, which forms the basis for the synthesis of polysilsesquioxane polymers with different functionality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!