A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Determining the view of chest radiographs. | LitMetric

Determining the view of chest radiographs.

J Digit Imaging

Department of Medical Informatics, Aachen University of Technology (RWTH), Pauwelsstrasse 30, 52057 Aachen, Germany.

Published: September 2003

Automatic identification of frontal (posteroanterior/anteroposterior) vs. lateral chest radiographs is an important preprocessing step in computer-assisted diagnosis, content-based image retrieval, as well as picture archiving and communication systems. Here, a new approach is presented. After the radiographs are reduced substantially in size, several distance measures are applied for nearest-neighbor classification. Leaving-one-out experiments were performed based on 1,867 radiographs from clinical routine. For comparison to existing approaches, subsets of 430 and 5 training images are also considered. The overall best correctness of 99.7% is obtained for feature images of 32 x 32 pixels, the tangent distance, and a 5-nearest-neighbor classification scheme. Applying the normalized cross correlation function, correctness yields still 99.6% and 99.3% for feature images of 32 x 32 and 8 x 8 pixel, respectively. Remaining errors are caused by image altering pathologies, metal artifacts, or other interferences with routine conditions. The proposed algorithm outperforms existing but sophisticated approaches and is easily implemented at the same time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3045251PMC
http://dx.doi.org/10.1007/s10278-003-1655-xDOI Listing

Publication Analysis

Top Keywords

chest radiographs
8
feature images
8
determining view
4
view chest
4
radiographs
4
radiographs automatic
4
automatic identification
4
identification frontal
4
frontal posteroanterior/anteroposterior
4
posteroanterior/anteroposterior lateral
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!