Studies of the histopathology of ovarian cancer arising in patients with germline mutations in BRCA1 or BRCA2 have shown inconsistent findings. We analyzed the large number of tumors from women enrolled in the Gilda Radner Familial Ovarian Cancer Registry for correlations between histopathology and BRCA mutation status. Histopathology slides and reports were reviewed for histology, grade, and stage for cancers of the ovary or peritoneum in 220 women from 126 Gilda Radner Familial Ovarian Cancer Registry families. At least one affected member of each family was analyzed for mutations in the BRCA1 and BRCA2 genes, and tumors from mutation-positive families were compared with those from mutation-negative families. Of 70 patients from 38 BRCA1-positive families, 69 had epithelial ovarian carcinoma and one had a dysgerminoma. Fifteen of 16 patients from nine BRCA2-positive families had epithelial ovarian cancer, and one had a primary peritoneal cancer. Of 134 patients from 79 BRCA-negative families, 118 had epithelial ovarian carcinoma, 11 had ovarian borderline tumors, three had nonepithelial tumors, and two had primary peritoneal carcinoma. There were fewer grade 1 (p < 0.001) and stage I (p = 0.005) cancers in patients from BRCA-positive families than in patients from BRCA-negative families. Neither mucinous nor borderline tumors were found in the BRCA-positive families. In conclusion, ovarian cancers arising in women from BRCA-positive families are more likely to be high-grade and have extraovarian spread than tumors arising in women from BRCA-negative families. Borderline and mucinous tumors do not appear to be part of the phenotype of families with germline mutations in the BRCA genes.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.pgp.0000101083.35393.cdDOI Listing

Publication Analysis

Top Keywords

ovarian cancer
20
gilda radner
12
radner familial
12
familial ovarian
12
cancer registry
12
families
12
epithelial ovarian
12
brca-negative families
12
brca-positive families
12
ovarian
10

Similar Publications

B7-H3 (CD276), a member of the B7-family of immune checkpoint proteins, has been shown to have immunological and non-immunological effects promoting tumorigenesis [1, 2] and expression correlates with poor prognosis for many solid tumors, including cervical, ovarian and breast cancers [3-6]. We recently identified a tumor-cell autochthonous tumorigenic role for dimerization of the 4Ig isoform of B7-H3 (4Ig-B7-H3) [7], where 4Ig-B7-H3 dimerization activated tumor-intrinsic cellular proliferation and tumorigenesis pathways, providing a novel opportunity for therapeutic intervention. Herein, a live cell split-luciferase complementation strategy was used to visualize 4Ig-B7-H3 homodimerization in a high-throughput small molecule screen (HTS) to identify modulators of this protein-protein interaction (PPI).

View Article and Find Full Text PDF

Liposomal doxorubicin (Dox), a treatment option for recurrent ovarian cancer, often suffers from suboptimal biodistribution and efficacy, which might be addressed with precision drug delivery systems. Here, we introduce a catheter-based endoscopic probe designed for multispectral, quantitative monitoring of light-triggered drug release. This tool utilizes red-light photosensitive porphyrin-phospholipid (PoP), which is encapsulated in liposome bilayers to enhance targeted drug delivery.

View Article and Find Full Text PDF

Background: There has been limited success of cancer immunotherapies in the treatment of ovarian cancer (OvCa) to date, largely due to the immunosuppressive tumour microenvironment (TME). Tumour-associated macrophages (TAMs) are a major component of both the primary tumour and malignant ascites, promoting tumour growth, angiogenesis, metastasis, chemotherapy resistance and immunosuppression. Differential microRNA (miRNA) profiles have been implicated in the plasticity of TAMs.

View Article and Find Full Text PDF

Tribbles homolog 2 (TRIB2), a pseudoserine/threonine kinase, is a member of the TRIB family. TRIB2 primarily regulates cell proliferation through its scaffold or adaptor effect on promoting the degradation of target proteins by E3 ligase-dependent ubiquitination and regulating mitogen-activated protein kinase (MAPK) and protein kinase B (AKT) signaling pathways. TRIB2 is not only involved in the physiological proliferation of cells (granulosa cells, myoblasts, naive T cells, and thymocytes) during normal development but also in the pathological proliferation of vascular smooth muscle cells and a variety of cancer cells (lung cancer cells, liver cancer cells, leukemia cells, pancreatic cancer cells, gastric cancer cells, prostate cancer cells, thyroid cancer cells, cervical cancer cells, melanoma cells, colorectal cancer cells, ovarian cancer cells and osteosarcoma cells) under disease conditions.

View Article and Find Full Text PDF

Ovarian cancer remains the most lethal gynecological malignancy. Despite the approval of promising targeted therapy such as bevacizumab and PARP inhibitors, 5-year survival has not improved significantly. Thus, there is an urgent need for new therapeutics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!