Migration and differentiation of neural precursor cells can be directed by microglia.

Proc Natl Acad Sci U S A

Karolinska Institutet, Department of Medicine and Center for Molecular Medicine, Karolinska Hospital, 171 76 Stockholm, Sweden.

Published: December 2003

Recent reports have supported the existence of neural stem cells in the adult mammalian CNS. Important features of such cells are self-renewal and multipotency, i.e., they can give rise to neurons, astrocytes, and oligodendrocytes and thus in principle replace lost cells in the CNS. Observations in several animal models of CNS diseases have shown that by unknown mechanisms endogenous as well as exogenous precursor cells preferentially migrate to damaged areas. Microglia are immunoreactive cells of nonneural lineage resident in the CNS. After injury to the CNS, microglia are rapidly activated and found concentrated at the sites of injury. In the present article we show, in two different assays, that soluble factors released from mouse microglial cells direct the migration of neural CNS precursor cells. We also provide evidence that microglia have the capacity to influence the differentiation of both adult and embryonic neural precursor cells toward a neuronal phenotype. Given that an invariant feature of pathological processes in CNS is the activation of microglia, these results indicate an important and unique role for microglia in directing the replacement of damaged or lost cells in the CNS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC307679PMC
http://dx.doi.org/10.1073/pnas.2237050100DOI Listing

Publication Analysis

Top Keywords

precursor cells
16
cells
10
neural precursor
8
cns
8
lost cells
8
cells cns
8
microglia
6
migration differentiation
4
neural
4
differentiation neural
4

Similar Publications

A Wenzel Interfaces Design for Homogeneous Solute Distribution Obtains Efficient and Stable Perovskite Solar Cells.

Adv Mater

January 2025

College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.

The coffee-ring effect, caused by uneven deposition of colloidal particles in perovskite precursor solutions, leads to poor uniformity in perovskite films prepared through large-area printing. In this work, the surface of SnO is roughened to construct a Wenzel model, successfully achieving a super-hydrophilic interface. This modification significantly accelerates the spreading of the perovskite precursor solution, reducing the response delay time of perovskite colloidal particles during the printing process.

View Article and Find Full Text PDF

: Cellular biobanks are of great interest for performing studies finalized in the development of personalized approaches for genetic diseases, including β-thalassemia and sickle cell disease (SCD), important diseases affecting the hematopoietic system. These inherited genetic diseases are characterized by a global distribution and the need for intensive health care. The aim of this report is to present an update on the composition of a cellular Thal-Biobank, to describe its utilization since 2016, to present data on its application in studies on fetal hemoglobin induction and on gene editing, and to discuss its employment as a "unique tool" during and after the COVID-19 pandemic.

View Article and Find Full Text PDF

Alzheimer's disease (AD) prevention is a critical challenge for aging societies, necessitating the exploration of food ingredients and whole foods as potential therapeutic agents. This study aimed to identify natural compounds (NCs) with therapeutic potential in AD using an innovative bioinformatics-integrated deep neural analysis approach, combining computational predictions with molecular docking and in vitro experiments for comprehensive evaluation. We employed the bioinformatics-integrated deep neural analysis of NCs for Disease Discovery (BioDeepNat) application in the data collected from chemical databases.

View Article and Find Full Text PDF

Brain-derived neurotropic factor (BDNF) is expressed by skeletal muscle as a myokine. Our previous work showed that the active precursor, proBDNF, is the predominant form of BDNF expressed in skeletal muscle, and that following skeletal muscle injury, proBDNF levels are significantly increased. However, the function of the muscle-derived proBDNF in injury-induced inflammation has yet to be fully understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!