Trophoblast expression of fms-like tyrosine kinase 1 is not required for the establishment of the maternal-fetal interface in the mouse placenta.

Proc Natl Acad Sci U S A

Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, 600 University Avenue, Toronto, ON, Canada M5G 1X5.

Published: December 2003

Fms-like tyrosine kinase 1 (Flt1)/vascular endothelial growth factor (VEGF) receptor 1, a receptor for VEGF-A and placental growth factor, is expressed in the spongiotrophoblast layer that segregates the maternal and fetal vasculature in the mouse placenta. A soluble form of Flt1 (sFlt1) produced in the mouse and human placenta can also be detected in the maternal blood. Levels of maternal sFlt1 are elevated in preeclampsia, suggesting that placental sFlt1 plays roles in regulating the maternal vasculature during pregnancy. However, it remains to be determined whether placental Flt1/sFlt1 serves as a regulator of VEGF-A activity in the placenta per se. Here, we investigated the placental development in Flt1-deficient mice. Flt1 is expressed in a subpopulation of ectoplacental cone cells and later marks the spongiotrophoblast cells, peri/endovascular trophoblast cells, and trophoblast glycogen cells. The labyrinth of Flt1lacZ/lacZ placentae lacked the fetal capillary network because of a defect in allantoic mesoderm invasion. To address whether the absence of Flt1 in the trophoblast alone affects placental development, we investigated chimeric placentae comprised of Flt1lacZ/lacZ trophoblast and Flt1+/+ mesoderm, generated by tetraploid aggregation. Fetal growth was supported normally, and no defect in the formation of placental circulation into the maternal spiral artery or invasion of peri/endovascular trophoblast was detected. These findings indicate that trophoblast-derived Flt1/sFlt1 is dispensable for the initial establishment of the maternal-fetal interface in the mouse placenta. Targeting maternal sFlt1 levels for treatment of preeclampsia may thus be possible without affecting the proper formation of the placenta.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC307620PMC
http://dx.doi.org/10.1073/pnas.2635424100DOI Listing

Publication Analysis

Top Keywords

mouse placenta
12
fms-like tyrosine
8
tyrosine kinase
8
establishment maternal-fetal
8
maternal-fetal interface
8
interface mouse
8
growth factor
8
maternal sflt1
8
placental development
8
peri/endovascular trophoblast
8

Similar Publications

Fullerenols, a water-soluble polyhydroxy derivative of fullerene, hold promise in medical and materials science due to their unique properties. However, concerns about their potential embryotoxicity remain. Using a pregnancy mouse model and metabolomics analysis, our findings reveal that fullerenols exposure during pregnancy not only significantly reduced mice placental weight and villi thickness, but also altered the classes and concentrations of metabolites in the mouse placenta.

View Article and Find Full Text PDF

Background: transmission can occur during pregnancy if the mother contracts the infection for the first time. Treatment strategies include the use of antimicrobial medications and providing supportive care. Spiramycin is commonly used to treat toxoplasmosis in pregnant women and to hinder the disease's transmission.

View Article and Find Full Text PDF

Background: The immunologic factors are the chief reason for recurrent pregnancy loss (RPL) and induction of maternal-fetal tolerance is the main treatment for this cause of RPL, but the effect of this method is uncertainly and needs multiple doses and/or interventions. The aim of this study was to investigate whether a single administration of transforming growth factor-β1 (TGF-β1) can improve the pregnancy outcomes of RPL mice and whether the improvement is cause by TGF-β1 driving the expression of immune tolerance molecule indoleamine 2,3-dioxygenase (IDO).

Materials And Methods: In this experimental study, 40 RPL model mice were equally divided into a control group, that received 0.

View Article and Find Full Text PDF

Myeloperoxidase-mediated immature dendritic cell promotes vascular remodeling and functional placenta formation.

Placenta

January 2025

Department of Reproductive Medicine Centre, The first Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China. Electronic address:

Introduction: The distribution of myeloperoxidase (MPO) and dendritic cells (DCs) in sponge trophoblast cells may contribute to the syncytialisation of trophoblast cells and the establishment of uterine placental circulation. Our previous series of studies have shown that MPO plays an important role in angiogenesis and repair, and placental vascular dysfunction can lead to serious pregnancy complications and even miscarriage.

Methods: Mouse model of MPO knockout was constructed, and the crosstalk between MPO and dendritic cells (DC) cells was investigated to determine whether MPO is involved in the pregnancy process.

View Article and Find Full Text PDF

Fetal growth restriction (FGR) is characterized by the inability of the fetus to achieve its growth potential due to pathological factors, most commonly impaired placental trophoblast cell function. Currently, effective prevention and treatment methods of FGR are limited. We aimed to explore the pathogenesis of FGR and provide potential strategies for mitigating its occurrence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!