Compound lipophilicity is a fundamental physicochemical property that plays a pivotal role in the absorption, distribution, metabolism, and elimination (ADME) of therapeutic drugs. Lipophilicity is expressed in several different ways, including terms such as Log P, clogP, delta Log P, and Log D. Often a parabolic relationship exists between measured lipophilicity and in vivo brain penetration of drugs, where those moderate in lipophilicity often exhibit highest uptake. Reduced brain extraction of more lipophilic compounds is associated with increased non-specific binding to plasma proteins. More lipophilic compounds can also be more vulnerable to P450 metabolism, leading to faster clearance. Very polar compounds normally exhibit high water solubility, fast clearance through the kidneys, and often contain ionizable functional groups that limit blood-brain barrier (BBB) penetration. The brain penetration and specific to non-specific binding ratios exhibited in vivo by positron emission tomography (PET) and single photon emission computed tomography (SPECT) radiotracers involves a complex interplay between many critical factors, including lipophilicity, receptor affinity, metabolism, molecular size and shape, ionization potential, and specific binding to BBB efflux pumps or binding sites on albumin or other plasma proteins. This paper explores situations in which lipophilicity is a good predictor of BBB penetration, as well as those where this correlation is poor. The more commonly used methods for measuring lipophilicity are presented, and the various terms often found in the literature outlined. An attempt is made to describe how this information can be used in optimizing the development of PET and SPECT tracers that target the central nervous system (CNS).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mibio.2003.09.014DOI Listing

Publication Analysis

Top Keywords

blood-brain barrier
8
brain penetration
8
lipophilic compounds
8
non-specific binding
8
plasma proteins
8
bbb penetration
8
lipophilicity
7
penetration
5
determination lipophilicity
4
lipophilicity predictor
4

Similar Publications

Objective: Focused ultrasound (FUS)-mediated blood-brain barrier (BBB) opening is safe and potentially beneficial in patients with Alzheimer's disease (AD) for the removal of amyloid-beta (Aβ) plaques. However, the optimal BBB opening intervals and number of treatment sessions for clinical improvement remain undefined. Therefore, the aim of this study was to evaluate the safety and benefits of repeated and more extensive BBB opening alone.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) maintains brain homeostasis but also prevents most drugs from entering the brain. No paracellular diffusion of solutes is allowed because of tight junctions that are made impermeable by the expression of claudin5 (CLDN5) by brain endothelial cells. The possibility of regulating the BBB permeability in a transient and reversible fashion is in strong demand for the pharmacological treatment of brain diseases.

View Article and Find Full Text PDF

Objective: To evaluate the therapeutic effects of Kuanxiong Aerosol (KXA) on ischemic stroke with reperfusion and elucidate the underlying pharmacological mechanisms.

Methods: In vivo pharmacological effects on ischemic stroke with reperfusion was evaluated using the transient middle cerebral artery occlusion (t-MCAO) mice model. To evaluate short-term outcome, 30 mice were randomly divided into vehicle group (n=15) and KXA group (n=15).

View Article and Find Full Text PDF

Background And Aim: Hepatic encephalopathy (HE) is a complex neurological disorder in individuals with liver diseases, necessitating effective neuroprotective interventions to alleviate its adverse outcomes. Berberine (BBR), a natural compound with well-established anti-fibrotic and neuroprotective properties, has not been extensively studied in the context of glial activation under hyperammonaemic conditions. This study evaluates the neuroprotective potential of BBR in a thioacetamide (TAA)-induced HE rat model, focusing on its effects on glial activation and NLRP3 inflammasome signalling.

View Article and Find Full Text PDF

This review examines the role of the canine blood-brain barrier (BBB) in health and disease, focusing on the impact of the multidrug resistance (MDR) transporter P-glycoprotein (P-gp) encoded by the gene. The BBB is critical in maintaining central nervous system homeostasis and brain protection against xenobiotics and environmental drugs that may be circulating in the blood stream. We revise key anatomical, histological and functional aspects of the canine BBB and examine the role of the gene mutation in specific dog breeds that exhibit reduced P-gp activity and disrupted drug brain pharmacokinetics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!