A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cosmic microwave background snapshots: pre-WMAP and post-WMAP. | LitMetric

Cosmic microwave background snapshots: pre-WMAP and post-WMAP.

Philos Trans A Math Phys Eng Sci

Canadian Institute for Advanced Research, Cosmology and Gravity Program, Canadian Institute for Theoretical Astrophysics, McLennan Physical Laboratories, University of Toronto, 60 St George Street, Toronto, Ontario M5S 3H8, Canada.

Published: November 2003

We highlight the remarkable evolution in the cosmic microwave background (CMB) power spectrum C(l) as a function of multipole l over the past few years, and in the cosmological parameters for minimal inflation models derived from it: from anisotropy results before 2000; in 2000 and 2001 from Boomerang, Maxima and the Degree Angular Scale Interferometer (DASI), extending l to approximately 1000; and in 2002 from the Cosmic Background Imager (CBI), Very Small Array (VSA), ARCHEOPS and Arcminute Cosmology Bolometer Array Receiver (ACBAR), extending l to approximately 3000, with more from Boomerang and DASI as well. Pre-WMAP (pre-Wilkinson Microwave Anisotropy Probe) optimal band powers are in good agreement with each other and with the exquisite one-year WMAP results, unveiled in February 2003, which now dominate the l less, similar 600 bands. These CMB experiments significantly increased the case for accelerated expansion in the early Universe (the inflationary paradigm) and at the current epoch (dark energy dominance) when they were combined with "prior" probabilities on the parameters. The minimal inflation parameter set, [omega(b), omega(cdm), Omega(tot), Omega(Lambda), n(s), tau(C), sigma(8)], is applied in the same way to the evolving data. C(l) database and Monte Carlo Markov Chain (MCMC) methods are shown to give similar values, which are highly stable over time and for different prior choices, with the increasing precision best characterized by decreasing errors on uncorrelated "parameter eigenmodes". Priors applied range from weak ones to stronger constraints from the expansion rate (HST-h), from cosmic acceleration from supernovae (SN1) and from galaxy clustering, gravitational lensing and local cluster abundance (LSS). After marginalizing over the other cosmic and experimental variables for the weak + LSS prior, the pre-WMAP data of January 2003 compared with the post-WMAP data of March 2003 give Omega(tot) = 1.03(-0.04)(+0.05) compared with 1.02(-0.03)(+0.04), consistent with (non-Baroque) inflation theory. Adding the flat Omega(tot) = 1 prior, we find a nearly scale-invariant spectrum, n(s) = 0.95(-0.04)(+0.07) compared with 0.97(-0.02)(+0.02). The evidence for a logarithmic variation of the spectral tilt is less than or approximately 2sigma. The densities are for: baryons, omega(b) identical with Omega(b)h(2) = 0.0217(-0.002)(+0.002) (compared with 0.0228(-0.001)(+0.001)), near the Big Bang nucleosynthesis (BBN) estimate of 0.0214 +/- 0.002; CDM, omega(cdm) = Omega(cdm)h(2) = 0.126(-0.012)(+0.012) (compared with 0.121(-0.010)(+0.010)); the substantial dark (unclustered) energy, Omega(Lambda) approximately 0.66(-0.09)(+0.07) (compared with 0.70(-0.05)(+0.05)). The dark energy pressure-to-density ratio w(Q) is not well constrained by our weak + LSS prior, but adding SN1 gives w(Q) less than or approximately -0.7 for January 2003 and March 2003, consistent with the w(Q) = -1 cosmological constant case. We find sigma(8) = 0.89(-0.07)(+0.06) (compared with 0.86(-0.04)(+0.04)), implying a sizable Sunyaev-Zel'dovich (SZ) effect from clusters and groups; the high-l power found in the January 2003 data suggest sigma(8) approximately 0.94(-0.16)(+0.08) is needed to be SZ-compatible.

Download full-text PDF

Source
http://dx.doi.org/10.1098/rsta.2003.1295DOI Listing

Publication Analysis

Top Keywords

january 2003
12
cosmic microwave
8
microwave background
8
parameters minimal
8
minimal inflation
8
dark energy
8
weak lss
8
lss prior
8
march 2003
8
compared
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!