Ditopic dynamic combinatorial libraries were generated and screened toward inhibition of the bifunctional enzyme HPr kinase/phosphatase from Bacillus subtilis. The libraries were composed of all possible combinations resulting from the dynamic interconversion of 16 hydrazides and five monoaldehyde or dialdehyde building blocks, resulting in libraries containing up to 440 different constituents. Of all possible acyl hydrazones formed, active compounds containing two terminal cationic heterocyclic recognition groups separated by a spacer of appropriate structure could be rapidly identified using a dynamic deconvolution procedure. Thus, parallel testing of sublibraries where one specific component was excluded basically revealed all the essential components. A potent ditopic inhibitor, based on 2-aminobenzimidazole, was identified from the process.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm030917jDOI Listing

Publication Analysis

Top Keywords

bacillus subtilis
8
hpr kinase/phosphatase
8
ditopic dynamic
8
dynamic combinatorial
8
generation bis-cationic
4
bis-cationic heterocyclic
4
heterocyclic inhibitors
4
inhibitors bacillus
4
subtilis hpr
4
kinase/phosphatase ditopic
4

Similar Publications

Changeover method for biosafety cabinets using ozone gas.

PLoS One

January 2025

Center for Stem Cell and Regenerative Medicine, Institute of Science Tokyo, Bunkyo-ku, Tokyo, Japan.

This study evaluated the effectiveness of a biosafety cabinet equipped with an ozone generator, particularly during the transition periods between the production of cell products. As living cell products cannot undergo sterilization, maintaining an aseptic manufacturing environment is paramount. Raw materials, often derived from human tissues, are frequently contaminated with various resident bacteria, necessitating environmental resets after each process.

View Article and Find Full Text PDF

A novel polysaccharide in the envelope of influences the septal secretion of preproteins with a YSIRK/GXXS motif.

J Bacteriol

January 2025

Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA.

Unlabelled: Bacteria transport proteins across the plasma membrane to assemble their envelope, acquire nutrients, and establish appropriate interactions with their environment. The majority of these proteins are synthesized as precursors with a cleavable N-terminal signal sequence for recognition by the Sec machinery. In , a small subset of secreted precursors carries a YSIRK/GXXS motif.

View Article and Find Full Text PDF

Gluconeogenesis, the reciprocal pathway of glycolysis, is an energy-consuming process that generates glycolytic intermediates from non-carbohydrate sources. In this study, we demonstrate that robust and efficient gluconeogenesis in bacteria relies on the allosteric inactivation of pyruvate kinase, the enzyme responsible for the irreversible final step of glycolysis. Using the model bacterium as an example, we discovered that pyruvate kinase activity is inhibited during gluconeogenesis via its extra C-terminal domain (ECTD), which is essential for autoinhibition and metabolic regulation.

View Article and Find Full Text PDF

Background: The edible seeds of Ocimum gratissimum and Ocimum basilicum were found to be a potent source of phytochemicals with noteworthy antioxidant, antidiabetic, and antimicrobial properties. This study aimed to investigate the impact of germination and extraction solvents (ethanol (EtOH), distilled water) on the therapeutic properties exhibited and the ability of seed extracts to act as natural food preservatives.

Results: The EtOH extracts of germinated O.

View Article and Find Full Text PDF

Traditionally fermented sufu is popular because of its flavor, abundance of nutrients, and long shelf life. However, traditional sufu is difficult to produce via industrial processes because of dominant microorganism attenuation during fermentation. Herein, specific protease-producing strains were isolated from traditional sufu.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!