Effects of intraruminal propionate supplementation on nitrogen utilisation by the portal-drained viscera, the liver and the hindlimb in lambs fed frozen rye grass.

Br J Nutr

Unité de Recherche sur les Herbivores, Equipe Nutriments et Métabolismes, INRA Clermont Ferrand-Theix, 63122 St Genès Champanelle, France.

Published: November 2003

AI Article Synopsis

Article Abstract

The influence of propionate supplementation on the splanchnic metabolism of amino acids (AA) and other N compounds (urea-N and NH3-N) and the supply of AA and NH3-N to the hindlimb was investigated in growing lambs. Six rumen-cannulated and multicatheterised lambs (32.2 kg) were fed frozen rye grass at 690 kJ metabolisable energy intake/d per kg average metabolic body weight. They were infused intraruminally with a salt solution (control) or with propionate solutions at 0.23 mol/l (P1) or 0.41 mol/l (P2) infused at a maximal rate of 1.68 (SD 0.057) ml/min according to a repeated Latin square design. The propionate infusion did not increase the net portal appearance of total AA (TAA)-N but increased that of some branched-chain AA (valine and to a lesser extent isoleucine). Simultaneously, the propionate treatment (especially P2) induced an increased TAA utilisation by the liver. This was due mainly to an increased (+79%; P<0.07) utilisation of the essential AA and particularly the branched-chain AA. A stimulation of protein synthesis in the liver is hypothesised since (1) propionate stimulated insulin secretion and (2) utilisation of non-essential AA were less influenced by the propionate treatment in the liver (except for alanine), suggesting that the AA utilised by the liver were directed towards protein synthesis rather than towards oxidation or urea synthesis. At the splanchnic level, the propionate treatment did not have any effect on the TAA, non-essential AA and essential AA, except for a net splanchnic release that was decreased for leucine (P<0.02) and methionine (P<0.01) and increased for threonine (P<0.05). The propionate treatment did not have any effect on the hindlimb uptake of AA (essential and non-essential). As a consequence, even though the propionate treatment induced some major alterations in the splanchnic metabolism of AA, there were no changes in the net AA balance in the hindlimb (and hence probably on muscle growth). The role of the splanchnic tissues in the regulation of the AA supply to the peripheral tissues (such as muscle) therefore appears to be prominent in the regulation of muscle growth. Whether the peripheral tissues regulate their own supply by interacting with the splanchnic tissues (and especially the liver) or the liver is the only regulator of the AA supply to the muscle remains in doubt.

Download full-text PDF

Source
http://dx.doi.org/10.1079/bjn2003987DOI Listing

Publication Analysis

Top Keywords

propionate supplementation
8
fed frozen
8
frozen rye
8
rye grass
8
propionate
5
effects intraruminal
4
intraruminal propionate
4
supplementation nitrogen
4
nitrogen utilisation
4
utilisation portal-drained
4

Similar Publications

Background/objectives: Ergothioneine (EGT) is an effective antioxidant that animals cannot produce and has an important anti-inflammatory role in cell protection, which can help lower the risk of various diseases. In this study, we investigated the potential role of gut microbiota in the production of EGT, which was found to increase in the mouse liver after dietary supplementation with betaine (BET) or polydextrose (PDX).

Methods: The effects of BET and PDX on the gut microbiota and tissue EGT content were investigated using a diet-induced obese mouse model and simulated fermentation in the human colon.

View Article and Find Full Text PDF

Gut-derived lactic acid enhances tryptophan to 5-hydroxytryptamine in regulation of anxiety via .

Gut Microbes

December 2025

MOE/NHC/CAMS Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.

The gut microbiota plays a pivotal role in anxiety regulation through pathways involving neurotransmitter production, immune signaling, and metabolic interactions. Among these, gut-derived serotonin (5-hydroxytryptamine, 5-HT), synthesized from tryptophan metabolism, has been identified as a key mediator. However, it remains unclear whether specific microbial factors regulate tryptophan metabolism to influence 5-HT production and anxiety regulation.

View Article and Find Full Text PDF

Methane emissions from ruminant digestion contribute significantly to global anthropogenic greenhouse gas emissions. Members of the phylum Rhodophyta (red algae), particularly Asparagopsis sp., have shown promising results in reducing methane emissions in ruminants, due to their high content of halogenated methane analog compounds.

View Article and Find Full Text PDF

This study aimed to evaluate the effects of Mosla chinensis extract (MCE) on broiler intestinal health. A total of 240 1-day-old Arbor Acres (AA) broilers (balanced for sex) were randomly allocated into four treatment groups, each with six replicates of 10 chickens. The study comprised a starter phase (days 1-21) and a grower phase (days 22-42).

View Article and Find Full Text PDF

Introduction: Rumen-protected fat (RPF) is a vital dietary energy source for dairy cows. However, the influences of RPF on rumen volatile fatty acid (VFA) content and bacterial communities in goats are poorly documented.

Methods: In this study, 12 castrated male goats (body weight [BW]: 13.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!