Activation of neuronal nicotinic acetylcholine receptors (nAChR) by nicotine has been suggested to protect neurons against a hypoxic insult. The objective of this study was to examine the nature of cell death induced by acute hypoxia in rat primary cortical cultures and the neuroprotective potential of nicotine in ameliorating these processes. Neuronal cell death induced by a 4-h exposure to hypoxia (0.1% O(2)) was apoptotic, as shown by TUNEL staining and assays monitoring DNA strand breaks and caspase-3/7 activity. The presence of nicotine (10 microM) during the hypoxic insult protected a subpopulation of susceptible neurones against DNA damage and apoptosis induced by oxygen deprivation. This protective effect of nicotine was prevented by a 30-min pre-incubation with either 100 nM alpha-bungarotoxin or 1 microM dihydro-beta-erythroidine, but not 1 microM atropine, suggesting that activation of at least two subtypes of nAChR, alpha7 and beta2* nAChR, is involved in mediating nicotine neuroprotection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1044-7431(03)00244-6 | DOI Listing |
Front Biosci (Landmark Ed)
December 2024
Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA.
Background: Spatial-temporal control of mRNA translation in dendrites is important for synaptic plasticity. In response to pre-synaptic stimuli, local mRNA translation can be rapidly triggered near stimulated synapses to supply the necessary proteins for synapse maturation or elimination, and 3' untranslated regions (UTRs) are responsible for proper localization of mRNAs in dendrites. Although is a robust technique for analyzing RNA localization in fixed neurons, live-cell imaging of RNA dynamics remains challenging.
View Article and Find Full Text PDFNetw Neurosci
December 2024
Department of Physics, Indiana University, Bloomington, IN, USA.
Most of the recent work in psychedelic neuroscience has been done using noninvasive neuroimaging, with data recorded from the brains of adult volunteers under the influence of a variety of drugs. While these data provide holistic insights into the effects of psychedelics on whole-brain dynamics, the effects of psychedelics on the mesoscale dynamics of neuronal circuits remain much less explored. Here, we report the effects of the serotonergic psychedelic N,N-diproptyltryptamine (DPT) on information-processing dynamics in a sample of in vitro organotypic cultures of cortical tissue from postnatal rats.
View Article and Find Full Text PDFCureus
November 2024
Department of Neurosurgery, Fukushima Medical University, Fukushima, JPN.
Introduction The degree to which each human brain hemisphere governs specific cognitive processes, such as language and handedness (the preference or dominance of one hand over the other), varies across individuals. Research has explored the nature of language laterality in left-handed (LH) individuals, indicating that left-hemisphere dominance for language is commonly observed across both left- and right-handed populations. Advanced imaging techniques, including functional transcranial Doppler sonography and fMRI, have revealed subtle differences in language lateralization between LH and right-handed (RH) individuals, particularly in semantic processing tasks.
View Article and Find Full Text PDFInt J Parasitol Drugs Drug Resist
December 2024
Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China. Electronic address:
Toxoplasma gondii, a neurotropic protozoan parasite, affects the central nervous system and causes various neurological disorders. Previous studies have demonstrated that Arctigenin (AG) exhibits anti-T. gondii activity and reduces depression-like behaviors induced by T.
View Article and Find Full Text PDFAnat Rec (Hoboken)
December 2024
Laboratorio de Evolución Humana, Universidad de Burgos, Edificio I+D+i/CIBA, Burgos, Spain.
This research delves deeper into previous works on femoral cross-sectional properties during ontogeny by focusing for the first time on the human femoral midneck. The ontogenetic pattern of cross-sectional properties at femoral midneck is established and compared with those at three different femoral locations: the proximal femur, the midshaft, and the distal femur. The study sample includes 99 femora (70 non-adults and 29 adults) belonging to archaeological specimens.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!