The limbic system-associated membrane protein (LAMP) is a glycosylphosphatidylinositol-anchored glycoprotein with three immunoglobulin (Ig) domains that can either enhance or inhibit neurite outgrowth depending upon the neuronal population examined. In the present study, we investigate the domains responsible for these activities. Domain deletion revealed that the N-terminal IgI domain is necessary and sufficient for the neurite-promoting activity observed in hippocampal neurons. In contrast, inhibition of neurite outgrowth in SCG neurons, which is mediated by heterophilic interactions, requires full-length LAMP, although selective inhibition of the second Ig domain, but not the first or third domains, prevented the inhibitory effect. This indicates that the IgII domain of LAMP harbors the neurite-inhibiting activity, but only in the context of the full-length configuration. Covasphere-binding analyses demonstrate IgI/IgI interactions, but no interaction between IgII and any other domain, consistent with the biological activities that each domain mediates. The data suggest that LAMP may serve as a bifunctional guidance molecule, with distinct structural domains contributing to the promotion and inhibition of neurite outgrowth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1044-7431(03)00237-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!