PepN and its homologues are involved in the ATP-independent steps (downstream processing) during cytosolic protein degradation. To obtain insights into the contribution of PepN to the peptidase activity in Escherichia coli, the hydrolysis of a selection of endopeptidase and exopeptidase substrates was studied in extracts of wild-type strains and two pepN mutants, 9218 and DH5alphaDeltapepN. Hydrolysis of three of the seven endopeptidase substrates tested was reduced in both pepN mutants. Similar studies revealed that hydrolysis of 10 of 14 exopeptidase substrates studied was greatly reduced in both pepN mutants. This decreased ability to cleave these substrates is pepN-specific as there is no reduction in the ability to hydrolyse exopeptidase substrates in E. coli mutants lacking other peptidases, pepA, pepB or pepE. PepN overexpression complemented the hydrolysis of the affected exopeptidase substrates. These results suggest that PepN is responsible for the majority of aminopeptidase activity in E. coli. Further in vitro studies with purified PepN revealed a preference to cleave basic and small amino acids as aminopeptidase substrates. Kinetic characterization revealed the aminopeptidase cleavage preference of E. coli PepN to be Arg>Ala>Lys>Gly. Finally, it was shown that PepN is a negative regulator of the sodium-salicylate-induced stress in E. coli, demonstrating a physiological role for this aminoendopeptidase under some stress conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1099/mic.0.26518-0DOI Listing

Publication Analysis

Top Keywords

exopeptidase substrates
16
pepn mutants
12
pepn
11
escherichia coli
8
sodium-salicylate-induced stress
8
substrates studied
8
reduced pepn
8
hydrolysis exopeptidase
8
substrates
7
coli
6

Similar Publications

MetAP2 as a Therapeutic Target for Obesity and Type 2 Diabetes: Structural Insights, Mechanistic Roles, and Inhibitor Development.

Biomolecules

December 2024

Department of Biology Education, Daegu University, 201, Daegudae-ro, Gyeongsan-si 38453, Gyeongsangbuk-do, Republic of Korea.

Type 2 Diabetes Mellitus (T2DM) and obesity are globally prevalent metabolic disorders characterized by insulin resistance, impaired glucose metabolism, and excessive adiposity. Methionine aminopeptidase 2 (MetAP2), an intracellular metalloprotease, has emerged as a promising therapeutic target due to its critical role in regulating lipid metabolism, energy balance, and protein synthesis. This review provides a comprehensive analysis of MetAP2, including its structural characteristics, catalytic mechanism, and functional roles in the pathophysiology of T2DM and obesity.

View Article and Find Full Text PDF

ATM/ATR-Mediated DNA Damage Response Facilitates SARS-CoV-2 Spike Protein-Induced Syncytium Formation.

J Med Virol

January 2025

Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.

Multinucleated cells are present in lung tissues of patients infected by SARS-CoV-2. Although the spike protein can cause the fusion of infected cells and ACE2-expressing cells to form syncytia and induce damage, how host cell responses to this damage and the role of DNA damage response (DDR) signals in cell fusion are still unclear. Therefore, we investigated the effect of SARS-CoV-2 spike protein on the fusion of homologous and heterologous cells expressing ACE2 in vitro models, focusing on the protein levels of ATR and ATM, the major kinases responding to DNA damage, and their substrates CHK1 and CHK2.

View Article and Find Full Text PDF

Dipeptidyl peptidase IV (DPPIV, EC 3.4.14.

View Article and Find Full Text PDF

Immune-mediated inflammatory diseases (IMIDs) are characterized by dysregulated immune responses and chronic tissue inflammation. In the setting of inflammatory bowel disease (IBD), dipeptidyl peptidase 4 (DPP4) and gut microorganisms have been proved to interplay, potentially influenced by dietary factors. This rapid review aimed to study the DPP4-gut microbiome link in IBD.

View Article and Find Full Text PDF

In Silico Enzymolysis-Guided Mining of Aminopeptidases with Molecular Insights into Their Substrate Specificity Mechanism.

J Agric Food Chem

December 2024

State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, P. R. China.

The palatability of protein-based food heavily relies on aminopeptidases with the ability for bitter peptides degradation. However, there is a lack of methods for rational mining of aminopeptidases toward different proteins as well as the evolution direction for substrate specificity remaining unclear. In this study, an in silico simulated enzymolysis-based method for aminopeptidases mining was developed with protein as a model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!