Inositol is considered a growth factor in yeast cells and it plays an important role in Candida as an essential precursor for phospholipomannan, a glycophosphatidylinositol (GPI)-anchored glycolipid on the cell surface of Candida which is involved in the pathogenicity of this opportunistic fungus and which binds to and stimulates human macrophages. In addition, inositol plays an essential role in the phosphatidylinositol signal transduction pathway, which controls many cell cycle events. Here, high-affinity myo-inositol uptake in Candida albicans has been characterized, with an apparent K(m) value of 240 +/- 15 microM, which appears to be active and energy-dependent as revealed by inhibition with azide and protonophores (FCCP, dinitrophenol). Candida myo-inositol transport was sodium-independent but proton-coupled with an apparent K(m) value of 11.0 +/- 1.1 nM for H(+), equal pH 7.96 +/- 0.05, suggesting that the C. albicans myo-inositol-H(+) transporter is fully activated at physiological pH. C. albicans inositol transport was not affected by cytochalasin B, phloretin or phlorizin, an inhibitor of mammalian sodium-dependent inositol transport. Furthermore, myo-inositol transport showed high substrate specificity for inositol and was not significantly affected by hexose or pentose sugars as competitors, despite their structural similarity. Transport kinetics in the presence of eight different inositol isomers as competitors revealed that proton bonds between the C-2, C-3 and C-4 hydroxyl groups of myo-inositol and the transporter protein play a critical role for substrate recognition and binding. It is concluded that C. albicans myo-inositol-H(+) transport differs kinetically and pharmacologically from the human sodium-dependent myo-inositol transport system and constitutes an attractive target for delivery of cytotoxic inositol analogues in this pathogenic fungus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/mic.0.26644-0 | DOI Listing |
Oncol Res
January 2025
Department of Physiology, China Medical University, Taichung, 404328, Taiwan.
Objectives: Mitochondrial Ca uniporter (MCU) provides a Ca influx pathway from the cytosol into the mitochondrial matrix and a moderate mitochondrial Ca rise stimulates ATP production and cell growth. MCU is highly expressed in various cancer cells including breast cancer cells, thereby increasing the capacity of mitochondrial Ca uptake, ATP production, and cancer cell proliferation. The objective of this study was to examine MCU inhibition as an anti-cancer mechanism.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102446, China. Electronic address:
Age-related cataract (ARC) remains the leading cause of blindness worldwide. Sagittaria sagittifolia polysaccharide (SSP) extract, a key component of Sagittaria sagittifolia L., exhibits anti-oxidant and anti-apoptotic effects with potential applications in ARC.
View Article and Find Full Text PDFJ Clin Med
January 2025
The Experts Group on Inositol in Basic and Clinical Research, and on PCOS (EGOI-PCOS), 00161 Rome, Italy.
Myo-inositol plays a vital role in human health, functioning as a second messenger of FSH and facilitating the transport of glucose into the cell. Consequently, myo-inositol is regularly utilized in the treatment of polycystic ovary syndrome (PCOS), wherein it acts upon metabolic factors, improving insulin sensitivity and reducing total androgen levels. Patients with PCOS frequently suffer from infertility; thus, the use of myo-inositol has been explored in improving assistive reproductive technique (ART) procedures.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
2-arachnadoyl glycerol (2-AG) is one of the most common endocannabinoid molecules with anti-proliferative, cytotoxic, and pro-proliferative effects on different types of tumors. Typically, it induces cell death via cannabinoid receptor 1/2 (CB1/CB2)-linked ceramide production. In breast cancer, ceramide is counterbalanced by the sphingosine-1-phosphate, and thus the mechanisms of 2-AG influence on proliferation are poorly understood.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.
Salt stress disturbs plant growth and photosynthesis due to its toxicity. The ice plant Mesembryanthemum crystallinum is a highly salt-tolerant facultative crassulacean acid metabolism (CAM) plant. However, the genetic basis of the salt tolerance mechanisms in ice plants remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!