Numerous cell-to-cell signals tightly regulate CTL function. Human fibroblasts infected with HSV type 1 or 2 can generate such a signal and inactivate human CTL. Inactivated CTL lose their ability to release cytotoxic granules and synthesize cytokines when triggered through the TCR. Inactivation requires cell-to-cell contact between CTL and HSV-infected cells. However, inactivated CTL are not infected with HSV. The inactivation of CTL is sustainable, as CTL function remains impaired when the CTL are removed from the HSV-infected cells. IL-2 treatment does not alter inactivation, and the inactivated phenotype is not transferable between CTL, distinguishing this phenotype from traditional anergy and T regulatory cell models. CTL inactivated by HSV-infected cells are not apoptotic, and the inactivated state can be overcome by phorbol ester stimulation, suggesting that inactivated CTL are viable and that the signaling block is specific to the TCR. HSV-infected cells require the expression of U(S)3, a viral protein kinase, to transmit the inactivating signal. Elucidation of the molecular nature of this signaling pathway may allow targeted manipulation of CTL function.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.171.12.6733DOI Listing

Publication Analysis

Top Keywords

hsv-infected cells
16
ctl
13
ctl inactivated
12
ctl function
12
inactivated ctl
12
viral protein
8
protein kinase
8
infected hsv
8
inactivated
6
cells
5

Similar Publications

CFTR Inhibitors Display Antiviral Activity against Herpes Simplex Virus.

Viruses

August 2024

Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.

The cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-dependent Cl channel, is closely associated with multiple pathogen infections, such as SARS-CoV-2. However, whether the function of the CFTR is involved in herpes simplex virus (HSV) infection has not been reported. To evaluate the association of CFTR activity with HSV infection, the antiviral effect of CFTR inhibitors in epithelial cells and HSV-infected mice was tested in this study.

View Article and Find Full Text PDF

The HIF transcription network exerts innate antiviral activity in neurons and limits brain inflammation.

Cell Rep

February 2024

Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark. Electronic address:

Pattern recognition receptors (PRRs) induce host defense but can also induce exacerbated inflammatory responses. This raises the question of whether other mechanisms are also involved in early host defense. Using transcriptome analysis of disrupted transcripts in herpes simplex virus (HSV)-infected cells, we find that HSV infection disrupts the hypoxia-inducible factor (HIF) transcription network in neurons and epithelial cells.

View Article and Find Full Text PDF

Herpes simplex virus infection induces necroptosis of neurons and astrocytes in human fetal organotypic brain slice cultures.

J Neuroinflammation

February 2024

HerpesLabNL of the Department of Viroscience (Room Ee1720a), Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.

Background: Herpes simplex virus (HSV) encephalitis (HSE) is a serious and potentially life-threatening disease, affecting both adults and newborns. Progress in understanding the virus and host factors involved in neonatal HSE has been hampered by the limitations of current brain models that do not fully recapitulate the tissue structure and cell composition of the developing human brain in health and disease. Here, we developed a human fetal organotypic brain slice culture (hfOBSC) model and determined its value in mimicking the HSE neuropathology in vitro.

View Article and Find Full Text PDF

Interferons (IFN) are expressed in and secreted from cells in response to virus infection, and they induce the expression of a variety of genes called interferon-stimulated genes (ISGs) in infected and surrounding cells to block viral infection and limit spread. The mechanisms of action of a number of cytoplasmic ISGs have been well defined, but little is known about the mechanism of action of nuclear ISGs. Constitutive levels of nuclear interferon-inducible protein 16 (IFI16) serve to induce innate signaling and epigenetic silencing of herpes simplex virus (HSV), but only when the HSV infected cell protein 0 (ICP0) E3 ligase, which promotes IFI16 degradation, is inactivated.

View Article and Find Full Text PDF

Heme Oxygenase-1 Expression in Dendritic Cells Contributes to Protective Immunity against Herpes Simplex Virus Skin Infection.

Antioxidants (Basel)

May 2023

Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile.

Herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) infections are highly prevalent in the human population and produce mild to life-threatening diseases. These viruses interfere with the function and viability of dendritic cells (DCs), which are professional antigen-presenting cells that initiate and regulate the host's antiviral immune responses. Heme oxygenase-1 (HO-1) is an inducible host enzyme with reported antiviral activity against HSVs in epithelial cells and neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!