Regulation of inducible nitric oxide synthase expression by p300 and p50 acetylation.

J Immunol

Vascular Biology Research Center, Institute of Molecular Medicine and Division of Hematology, Department of Internal Medicine, University of Texas Health Science Center, Houston, TX 77030, USA.

Published: December 2003

To determine whether p300 is involved in inducible NO synthase (iNOS) transcriptional regulation, we evaluated the effect of p300 overexpression on iNOS expression and characterized p300 binding to iNOS promoter in RAW 264.7 cells. p300 overexpression increased iNOS expression which was abrogated by deletion of the histone acetyltransferase (HAT) domain (Delta1472-1522). DNA-binding and chromatin immunoprecipitation assays revealed binding of p300 to several DNA-bound transactivators at basal state. Following stimulation with LPS plus IFN-gamma, binding of p300, p50/p65 NF-kappaB, and IFN-regulatory factor-1 was increased by approximately 2-fold. Nuclear p50 was complexed with and acetylated by p300 at the basal binding state which was increased by LPS and IFN-gamma stimulation. p300 overexpression resulted in increased p50 acetylation which was reduced by HAT mutation. p50 acetylation correlated with increased NF-kappaB binding and enhanced p300 recruitment. Co-overexpression of E1A abolished the augmentation of p50 acetylation and p50 binding induced by p300 overexpression, and a correlative suppression of p300 recruitment to the complex. We conclude that p300 is essential for iNOS transcription. Our results suggest that p300 HAT acetylates the p50 subunit of NF-kappaB, thereby increasing NF-kappaB binding and NF-kappaB mediated transactivation.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.171.12.6581DOI Listing

Publication Analysis

Top Keywords

p50 acetylation
16
p300 overexpression
16
p300
14
inos expression
8
overexpression increased
8
binding p300
8
lps ifn-gamma
8
nf-kappab binding
8
p300 recruitment
8
p50
7

Similar Publications

Protein post-translational modifications play a vital role in various cellular events essential for maintaining cellular physiology and homeostasis. In cancer cells, aberrant post-translational modifications such as glycosylation, acetylation, and phosphorylation on proteins can result in the generation of antigenic peptide variants presented in complex with MHC molecules. These modified peptides add to the class of tumorspecific antigens and offer promising avenues for targeted anti- cancer therapies.

View Article and Find Full Text PDF

Cancer cells often use alternative nutrient sources to support their metabolism and proliferation. One important alternative nutrient source for many cancers is acetate. Acetate is metabolized into acetyl-coenzyme A (CoA) by acetyl-CoA synthetases 1 and 2 (ACSS1 and ACSS2), which are found in the mitochondria and cytosol, respectively.

View Article and Find Full Text PDF

The acetylation of autophagy protein 9 A (ATG9A) in the lumen of the endoplasmic reticulum (ER) by ATase1 and ATase2 regulates the induction of reticulophagy. Analysis of the ER-specific ATG9A interactome identified calreticulin (CALR), an ER luminal Ca-binding chaperone, as key for ATG9A activity. Specifically, if acetylated, ATG9A is sequestered by CALR and prevented from engaging FAM134B and SEC62.

View Article and Find Full Text PDF

Fibrolamellar carcinoma (FLC) is a liver cancer of adolescents and young adults characterized by fusions of the genes encoding the protein kinase A catalytic subunit, PRKACA, and heat shock protein, DNAJB1. The chimeric DNAJB1-PRKACA protein has increased kinase activity and is essential for FLC xenograft growth. Here, we explore the critical oncogenic pathways controlled by DNAJB1-PRKACA using patient-derived FLC models, engineered systems, and patient samples.

View Article and Find Full Text PDF

Macrophages contribute to the induction and resolution of inflammation and play a central role in chronic low-grade inflammation in cardiovascular diseases caused by atherosclerosis. Human milk oligosaccharides (HMOs) are complex unconjugated glycans unique to human milk that benefit infant health and act as innate immune modulators. Here, we identify the HMO 3'sialyllactose (3'SL) as a natural inhibitor of TLR4-induced low-grade inflammation in macrophages and endothelium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!