Eels seem to be a suitable model system for analysing regulatory mechanisms of drinking behavior in vertebrates, since most dipsogens and antidipsogens in mammals influence the drinking rate in the seawater eels similarly. The drinking behavior in fishes consists of swallowing alone, since they live in water and water is constantly held in the mouth for respiration. Therefore, contraction of the upper esophageal sphincter (UES) muscle limits the drinking rate in fishes. The UES of the eel was innervated by the glossopharyngeal-vagal motor complex (GVC) in the medulla oblongata (MO). The GVC neurons were immunoreactive to an antibody raised against choline acetyltransferase (ChAT), an acetylcholine (ACh) synthesizing enzyme, indicating that the eel UES muscle is controlled cholinergically by the GVC. The neuronal activity of the GVC was inhibited by adrenaline or dopamine, suggesting catecholaminergic innervation to the GVC. The AP and the commissural nucleus of Cajal (NCC) in the MO projected to the GVC and were immunoreactive to an antibody raised against tyrosine hydroxylase (TH), rate limiting enzyme to produce catecholamines from tyrosine. Therefore, it is likely that activation in the AP or the NCC may inhibit the GVC and thus relaxes the UES muscle, which allows for water to enter into the esophagus. During passing through the esophagus, the imbibed sea water (SW) was desalted to approximately 1/2 SW, which was further diluted in the stomach and arrived at the intestine as approximately 1/3 SW, almost isotonic to the plasma. Finally, from the diluted SW, the eel intestine absorbed water following the Na(+)-K(+)-2Cl(-) cotransport (NKCC2) system. The NaCl and water absorption across the intestine was regulated by various factors, especially by peptides such as atrial natriuretic peptide (ANP) and somatostatin (SS-25 II). During desalination in the esophagus, however, excess salt enters into the blood circulation, which is liable to raise the plasma osmolarity. However, the eel heart was constricted powerfully by the hyperosmolarity, suggesting that the hyperosmolarity enhances the stroke volume to the gill, where excess salt was extruded powerfully via Na(+)-K(+)-2Cl(-) cotransport (NKCC1) system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1096-4959(03)00179-9 | DOI Listing |
Front Neurol
January 2025
Department of Human Neurosciences, Sapienza University, Rome, Italy.
Background/aims: Oro-pharyngeal dysfunction has been reported in Amyotrophic Lateral Sclerosis (ALS). We aimed to assess ALS patients upper gastrointestinal (GI) motor activity and GI symptoms according to bulbar and spinal onset and severity of ALS.
Methods: ALS bulbar (B) and spinal (S) patients with ALS Functional Rating Scale (ALSFRS-r) ≥35, bulbar sub-score ≥10, and Forced Vital Capacity (FVC) >50%, underwent to: Fiberoptic Endoscopic Evaluation of Swallowing (FEES); esophageal manometry; gastric emptying; Rome symptom questionnaire.
BMC Sports Sci Med Rehabil
January 2025
Universite Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité - UR 7424, UFRSTAPS, Villeurbanne, France.
Background: The Closed Kinetic Chain Upper Extremity Stability Test (CKCUEST) is a physical performance test designed to assess the upper extremity (UE) stability. However, only one outcome measure is provided for both UEs, limiting its application if the UEs are not similarly involved. Moreover, the changes in loads sustained by the support UE throughout the movement may influence the support UE stability.
View Article and Find Full Text PDFJ Appl Physiol (1985)
January 2025
Department of Otolaryngology, University of Minnesota, Minneapolis, Minnesota, United States.
Strength of vocal fold adduction has been hypothesized to be a critical factor influencing vocal acoustics but has been difficult to measure directly during phonation. Recent work has suggested that upper esophageal sphincter (UES) pressure, which can be easily assessed, increases with stronger vocal fold adduction, raising the possibility that UES pressure might indirectly reflect vocal fold adduction strength. However, concurrent UES pressure and vocal acoustics have not previously been examined across different vocal tasks.
View Article and Find Full Text PDFJ Bone Joint Surg Am
December 2024
Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.
Otolaryngol Head Neck Surg
February 2025
Section of Otolaryngology - Head & Neck Surgery, Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
Objective: High-resolution manometry (HRM) provides measures of esophageal function which are used to classify esophageal motility disorders based on the Chicago Classification system. Upper esophageal sphincter (UES) measures are obtained from HRM, but are not included in the classification system, rendering the relationship between UES measures and esophageal motility disorders unclear. Furthermore, changes in the acceptable amount of esophageal dysfunction between versions of this classification system has created controversy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!