Purpose: The major initiative of this study was to implement a novel proteomic approach in order to detect protein carbonylation in aged mouse brain. Several lines of evidence indicate that reactive oxygen species (ROS)-induced protein oxidation plays an essential role in the initiation of age-related neuropathologies. Therefore, the identification of free radical or peroxide substrates would provide further insight into key biochemical mechanisms that contribute to the progression of certain neurological disorders.
Methods: Historically, ROS targets have been identified by conventional immunological two-dimensional (2-D) gel electrophoresis and mass spectrometric analyses. However, specific classes of proteins, such as transmembrane-spanning proteins, high-molecular-weight proteins, and very acidic or basic proteins, are frequently excluded or underrepresented by these analyses. In order to fill this technologic gap, we have used a functional proteomics approach using a liquid chromatography tandem mass spectrometric (LC-MS/MS) analysis coupled with a hydrazide biotin-streptavidin methodology in order to identify protein carbonylation in aged mice.
Results: Our initial studies suggest an ability to identify at least 100 carbonylated proteins in a single LC-MS/MS experiment. In addition to high-abundance cytosolic proteins that have been previously identified by 2-D gel electrophoresis and mass spectrometric analyses, we are able to identify several low-abundance receptor proteins, mitochondrial proteins involved in glucose and energy metabolism, as well as a series of receptors and tyrosine phosphatases known to be associated with insulin and insulin-like growth factor metabolism and cell-signaling pathways.
Conclusions: Here we describe a rapid and sensitive proteomic analysis for the identification of carbonylated proteins in mouse brain homogenates through the conjunction of liquid chromatography and tandem mass spectrometry methods. We believe the ability to detect these post-translationally modified proteins specifically associated with brain impairments during the course of aging should allow one to more closely and objectively monitor the efficacy of various clinical treatments. In addition, the discovery of these unique brain biomarkers could also provide a conceptual framework for the future design of alternative drugs in the treatment of a variety of age-related neurodegenerative disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/b:pham.0000003366.25263.78 | DOI Listing |
J Vet Intern Med
January 2025
Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA.
Background: Oxidative injury occurs in septic people, but the role of oxidative stress and antioxidants has rarely been evaluated in foals.
Objectives/hypothesis: To measure reactive oxygen species (ROS), biomarkers of oxidative injury, and antioxidants in neonatal foals. We hypothesized that ill foals would have higher blood concentrations of ROS and biomarkers of oxidative injury and lower concentrations of antioxidants compared to healthy foals.
Proteomes
December 2024
Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
Lymphatic filariasis (LF) continues to impact 657 million individuals worldwide, resulting in lifelong and chronic impairment. The prevalent anti-filarial medications-DEC, albendazole, and ivermectin-exhibit limited adulticidal efficacy. Despite ongoing LF eradication programs, novel therapeutic strategies are essential for effective control.
View Article and Find Full Text PDFBMC Vet Res
January 2025
Materials Synthesis Laboratory, Carbon Tech Industrial Group, Carbon Tech, Tehran, Iran.
Background: Strongyle nematodes pose a major challenge in veterinary parasitology, causing significant economic losses in livestock due to resistance to conventional treatments. Current anthelmintics, like Ivermectin, often encounter resistance issues. This study aims to address these gaps by synthesizing Carbon Quantum Dots (CQDs) and Copper-Doped CQDs (Cu@CQDs) using glucose extract, and evaluating their nematicidal properties against strongyles in vitro.
View Article and Find Full Text PDFPurposeThe concept of dual-state hyper-energy metabolism characterized by elevated glycolysis and OxPhos has gained considerable attention during tumor growth and metastasis in different malignancies. However, it is largely unknown how such metabolic phenotypes influence the radiation response in aggressive cancers. Therefore, the present study aimed to investigate the impact of hyper-energy metabolism (increased glycolysis and OxPhos) on the radiation response of a human glioma cell line.
View Article and Find Full Text PDFIran J Pharm Res
October 2024
Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Background: Advanced glycation end products (AGEs) are complex compounds that play a critical role in neurological disorders, including the pathogenesis of Alzheimer's disease. Methylglyoxal (MG) is recognized as the primary precursor of AGEs. Methylglyoxal is produced endogenously and also introduced through dietary exposures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!