Simulation of light propagation by local spherical interface approximation.

Appl Opt

Department of Physics, University of Joensuu, PO Box 111, Joensuu FIN-80101, Finland.

Published: December 2003

A new local elementary interface approximation is introduced for the modeling of wave propagation through interfaces between homogeneous media. The incident wave and the surface profile are approximated locally by a spherical wave and a spherical surface, respectively. The wave field travels through the modulated structure according to the laws of geometrical optics, being refracted by the surface and propagating to the output plane locally as a geometric spherical wave. Diffraction theory is applied to propagate the field from the output plane onwards. We provide comparisons of the method with the thin-element approximation, the local plane-wave and interface approach, and rigorous diffraction theory using a sinusoidal surface-relief grating as an example. We illustrate the power of the new method by applying it to the analysis of a diffractive beam splitter.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.42.006804DOI Listing

Publication Analysis

Top Keywords

interface approximation
8
approximation local
8
spherical wave
8
output plane
8
diffraction theory
8
wave
5
simulation light
4
light propagation
4
propagation local
4
spherical
4

Similar Publications

Objective: Creating an intracortical brain-computer interface (iBCI) capable of seamless transitions between tasks and contexts would greatly enhance user experience. However, the nonlinearity in neural activity presents challenges to computing a global iBCI decoder. We aimed to develop a method that differs from a globally optimized decoder to address this issue.

View Article and Find Full Text PDF

Conventional versus Unconventional Oxygen Reduction Reaction Intermediates on Single Atom Catalysts.

ACS Appl Mater Interfaces

January 2025

Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, Barcelona 08028, Spain.

The oxygen reduction reaction (ORR) stands as a pivotal process in electrochemistry, finding applications in various energy conversion technologies such as fuel cells, metal-air batteries, and chlor-alkali electrolyzers. Hereby, a comprehensive density functional theory (DFT) investigation is presented into the proposed conventional and unconventional ORR mechanisms using single-atom catalysts (SACs) supported on nitrogen-doped graphene (NG) as model systems. Several reaction intermediates have been identified that appear to be more stable than the ones postulated in the conventional mechanism, which follows the *OOH, *O, and *OH intermediates.

View Article and Find Full Text PDF

Random walks and related spatial stochastic models have been used in a range of application areas, including animal and plant ecology, infectious disease epidemiology, developmental biology, wound healing and oncology. Classical random walk models assume that all individuals in a population behave independently, ignoring local physical and biological interactions. This assumption simplifies the mathematical description of the population considerably, enabling continuum-limit descriptions to be derived and used in model analysis and fitting.

View Article and Find Full Text PDF

Contact tracing is commonly used to manage infectious diseases of both humans and animals. It aims to detect early and control potentially infected individuals or farms that had contact with infectious cases. Because it is very resource-intensive, contact tracing is usually performed on a pre-defined time window, based on previous knowledge of the duration of the incubation period.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!