DLC-1 operates as a tumor suppressor gene in human non-small cell lung carcinomas.

Oncogene

Laboratory of Genetic Susceptibility, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA.

Published: February 2004

The deleted in liver cancer (DLC-1) gene at chromosome 8p21-22 is altered mainly by genomic deletion or aberrant promoter methylation in a large number of human cancers such as breast, liver, colon and prostate and is known to have an inhibitory effect on breast and liver tumor cell growth. Given the high frequency of deletion involving region 8p21-22 in human non-small cell lung carcinoma (NSCLC), we examined alterations of DLC-1 in a series of primary tumors and tumor cell lines and tested effects of DLC-1 on tumor cell growth. A significant decrease or absence of the DLC-1 mRNA expression was found in 95% of primary NSCLC (20/21) and 58% of NSCLC cell lines (11/19). Transcriptional silencing of DLC-1 was primarily associated with aberrant DNA methylation, rather than genomic deletion as 5-aza-2'-deoxycytidine induced reactivation of DLC-1 expression in 82% (9/11) NSCLC cell lines showing downregulated DLC-1. It was further evidenced by an aberrant DLC-1 promoter methylation pattern, which was detected by Southern blotting in 73% (8/11) of NSCLC cell lines with downregulation of the gene. The transfer of DLC-1 into three DLC-1 negative cell lines caused a significant inhibition in cell proliferation and/or a decrease in colony formation. Furthermore, stable transfer of DLC-1 abolished tumorigenicity in nude mice of two cell lines, suggesting that DLC-1 plays a role in NSCLC by acting as a bona fide new tumor suppressor gene.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.onc.1207291DOI Listing

Publication Analysis

Top Keywords

cell lines
24
dlc-1
13
tumor cell
12
nsclc cell
12
cell
11
tumor suppressor
8
suppressor gene
8
human non-small
8
non-small cell
8
cell lung
8

Similar Publications

Among contributors to diffusible signaling are portal systems which join two capillary beds through connecting veins. Portal systems allow diffusible signals to be transported in high concentrations directly from one capillary bed to the other without dilution in the systemic circulation. Two portal systems have been identified in the brain.

View Article and Find Full Text PDF

Filamin A C-terminal fragment modulates Orai1 expression by inhibition of protein degradation.

Am J Physiol Cell Physiol

January 2025

Department of Physiology (Cellular Physiology Research Group),Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, 10003-Caceres, Spain.

Filamin A (FLNA) is an actin-binding protein that has been reported to interact with STIM1 modulating the activation of Orai1 channels. Cleaving of FLNA by calpain leads to a C-terminal fragment that is involved in a variety of functional and pathological events, including pro-oncogenic activity in different types of cancer. Here we show that full-length FLNA is downregulated in samples from colon cancer patients as well as in the adenocarcinoma cell line HT-29.

View Article and Find Full Text PDF

Metastasis continues to pose a significant challenge in tumor treatment. Evidence indicates that choline dehydrogenase (CHDH) is crucial in tumorigenesis. However, the functional role of CHDH in colorectal cancer (CRC) metastasis remains unreported.

View Article and Find Full Text PDF

Background: Huntington disease (HD), a neurodegenerative autosomal dominant disorder, is characterized by involuntary choreatic movements with cognitive and behavioral disturbances. Up to now, no therapeutic strategies are available to completely ameliorate the progression of HD. has various pharmacologic effects such as antioxidant and anti-inflammatory activities.

View Article and Find Full Text PDF

Introduction: Lactic acid bacteria are prized for their probiotic benefits and gut health improvements. This study assessed five LAB isolates from Neera, with RAMULAB51 (, GenBank ON171686.1) standing out for its high hydrophobicity, auto-aggregation, antimicrobial activity, and enzyme inhibition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!