In islet beta-cells, the high expression of pyruvate carboxylase and the functional importance of the downstream anaplerosis pathways result in a unique characteristic whereby high glucose and fatty acids both increase production of a key fatty acid metabolite, long chain acyl-CoA, for signaling and enzyme regulation in beta-cells. We showed previously in islets that pyruvate dehydrogenase (PDH) activity is lowered by excess fatty acids (the so-called Randle effect). We have now investigated PDH activity and pyruvate metabolism in islets after 48-h culture at 16.7 mmol/liter glucose. Active PDH V(max) was lowered 65% by 48 h of high glucose, and this effect was markedly attenuated by co-culture with triacsin C, which inhibits acyl-CoA synthase. Despite the large reduction in PDH activity, glucose oxidation was twice normal. The reason was continued metabolism of pyruvate through pyruvate carboxylase (V(max), 83% of control) and diversion of flux through the pyruvate-malate shuttle. The result was a 3-fold increase of the pyruvate concentration that overcame the lowered PDH activity by mass action as shown by glucose oxidation measured with [6-(14)C]glucose being twice normal. In addition, glucose-induced insulin secretion was 3-fold increased after 48 h of high glucose, and this effect was totally blocked by co-culture with triacsin C. These results show that a unique feature of islet beta-cells is not only fatty acids but also excess glucose that impairs PDH activity. Also, a specialized trait of beta-cells is a long chain acyl-CoA-mediated defense mechanism that prevents a reduction in glucose oxidation and consequently in insulin secretion.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M307921200DOI Listing

Publication Analysis

Top Keywords

pdh activity
20
high glucose
16
glucose oxidation
16
long chain
12
fatty acids
12
glucose
10
pyruvate
8
pyruvate dehydrogenase
8
chain acyl-coa
8
islet beta-cells
8

Similar Publications

Internal hernias are one of the rare causes of intestinal obstruction and usually is the diagnosis of exclusion. Para-duodenal hernias (PDH) are rare congenital disorders that occur due to malrotation of the midgut in the embryonic phase of development. They can be asymptomatic or can present as an incarcerated, strangulated, or even obstructed internal hernia.

View Article and Find Full Text PDF

Glutaminase controls the first step in glutaminolysis, impacting bioenergetics, biosynthesis and oxidative stress. Two isoenzymes exist in humans, GLS and GLS2. GLS is considered prooncogenic and overexpressed in many tumours, while GLS2 may act as prooncogenic or as a tumour suppressor.

View Article and Find Full Text PDF

Recently, we demonstrated that the oncolytic Coxsackievirus B3 (CVB3) strain PD-H can be efficiently adapted to resistant colorectal cancer cells through dose-dependent passaging in colorectal cancer cells. However, the method is time-consuming, which limits its clinical applicability. Here, we investigated whether the manufacturing time of the adapted virus can be reduced by replacing the dose-based passaging with volume-based passaging.

View Article and Find Full Text PDF

Enhancing Stability and Activity of Fe-Based Catalysts for Propane Dehydrogenation via Anchoring Isolated Fe-Cl Sites.

ChemSusChem

January 2025

Key Laboratory of Luminescence and Optical Information Technology, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, P. R. China.

The eco-friendly features and desirable catalytic activities of Fe-based catalysts make them highly promising for propane dehydrogenation (PDH). However, simultaneously improving their stability and activity remains a challenge. Here, we present a strategy to address these issues synergistically by anchoring single-atom Fe-Cl sites in Al vacancies of AlO.

View Article and Find Full Text PDF

Nonalcoholic fatty liver disease (NAFLD) is one of the main causes of chronic liver disorders following liver transplantation. The prorenin receptor (PRR) plays a role in glucose and lipid metabolism, and the hepatic dysregulation of PRR is associated with the upregulation of several molecular pathways, such as the mammalian target of rapamycin (mTOR) and Peroxisome proliferator-activated receptor (PPAR) that promotes hepatic lipogenesis and leads to lipid accumulation in hepatocytes by upregulation of lipogenic genes. PRR inhibition leads to a reduction in the hepatic expression of sortilin-1 and low-density lipoprotein receptor (LDLR) levels and down-regulation of pyruvate dehydrogenase (PDH) and acetyl-CoA carboxylase (ACC) and reduces fatty acids synthesis in hepatocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!