Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The role in activity of outer regions in the substrate binding cleft in alpha-amylases is illustrated by mutational analysis of Tyr(105) and Thr(212) localized at subsites -6 and +4 (substrate cleavage occurs between subsites -1 and +1) in barley alpha-amylase 1 (AMY1). Tyr(105) is conserved in plant alpha-amylases whereas Thr(212) varies in these and related enzymes. Compared with wild-type AMY1, the subsite -6 mutant Y105A has 140, 15, and <1% activity (k(cat)/K(m)) on starch, amylose DP17, and 2-chloro-4-nitrophenyl beta-d-maltoheptaoside, whereas T212Y at subsite +4 has 32, 370, and 90% activity, respectively. Thus engineering of aromatic stacking interactions at the ends of the 10-subsite long binding cleft affects activity very differently, dependent on the substrate. Y105A dominates in dual subsite -6/+4 [Y105A/T212(Y/W)]AMY1 mutants having almost retained and low activity on starch and oligosaccharides, respectively. Bond cleavage analysis of oligosaccharide degradation by wild-type and mutant AMY1 supports that Tyr(105) is critical for binding at subsite -6. Substrate binding is improved by T212(Y/W) introduced at subsite +4 and the [Y105A/T212(Y/W)]AMY1 double mutants synergistically enhanced productive binding of the substrate aglycone. The enzymatic properties of the series of AMY1 mutants suggest that longer substrates adopt several binding modes. This is in excellent agreement with computed distinct multiple docking solutions observed for maltododecaose at outer binding areas of AMY1 beyond subsites -3 and +3.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M312825200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!