A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Oxygen-sensing neurons in the central nervous system. | LitMetric

Oxygen-sensing neurons in the central nervous system.

J Appl Physiol (1985)

Division of Pulmonary and Critical Care Medicine, Deparment of Medicine, Uversity of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903-0019, USA.

Published: January 2004

This mini-review summarizes the present knowledge regarding central oxygen-chemosensitive sites with special emphasis on their function in regulating changes in cardiovascular and respiratory responses. These oxygen-chemosensitive sites are distributed throughout the brain stem from the thalamus to the medulla and may form an oxygen-chemosensitive network. The ultimate effect on respiratory or sympathetic activity presumably depends on the specific neural projections from each of these brain stem oxygen-sensitive regions as well as on the developmental age of the animal. Little is known regarding the cellular mechanisms involved in the chemotransduction process of the central oxygen sensors. The limited information available suggests some conservation of mechanisms used by other oxygen-sensing systems, e.g., carotid body glomus cells and pulmonary vascular smooth muscle cells. However, major gaps exist in our understanding of the specific ion channels and oxygen sensors required for transducing central hypoxia by these central oxygen-sensitive neurons. Adaptation of these central oxygen-sensitive neurons during chronic or intermittent hypoxia likely contributes to responses in both physiological conditions (ascent to high altitude, hypoxic conditioning) and clinical conditions (heart failure, chronic obstructive pulmonary disease, obstructive sleep apnea syndrome, hypoventilation syndromes). This review underscores the lack of knowledge about central oxygen chemosensors and highlights real opportunities for future research.

Download full-text PDF

Source
http://dx.doi.org/10.1152/japplphysiol.00831.2003DOI Listing

Publication Analysis

Top Keywords

knowledge central
8
oxygen-chemosensitive sites
8
brain stem
8
central oxygen
8
oxygen sensors
8
central oxygen-sensitive
8
oxygen-sensitive neurons
8
central
7
oxygen-sensing neurons
4
neurons central
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!