Retinoic acid (RA) is known to accelerate wound healing and induce cell differentiation. All-trans RA (ATRA) exerts its effect by binding retinoic acid receptors, which are members of the nuclear receptor family. We investigated whether RA can alter expression of eotaxin, a potent eosinophil chemoattractant that is regulated by the transcription factors signal transducer and activator of transcription 6 (STAT6) and NF-kappaB. We examined the effects of RA on eotaxin expression in a human bronchial epithelial cell line BEAS-2B. ATRA and its stereodimer 9-cis retinoic acid (9-cis RA) inhibited IL-4-induced release of eotaxin at 10(-6) M by 78.0 and 52.0%, respectively (P < 0.05). ATRA and 9-cis RA also significantly inhibited IL-4-induced eotaxin mRNA expression at 10(-6) M by 52.3 and 53.5%, respectively (P < 0.05). In contrast, neither ATRA nor 9-cis RA had any effects on TNF-alpha-induced eotaxin production. In transfection studies using eotaxin promoter luciferase plasmids, the inhibitory effect of ATRA on IL-4-induced eotaxin production was confirmed at the transcriptional level. Interestingly, ATRA had no effects on IL-4-induced tyrosine phosphorylation, nuclear translocation, or DNA binding activity of STAT6. Activating protein-1 was not involved in ATRA-mediated transrepression of eotaxin with IL-4 stimulation. The mechanism of the inhibitory effect of ATRA on IL-4-induced eotaxin production in human bronchial epithelial cells has not been elucidated but does not appear to be due to an effect on STAT6 activation. These findings raise the possibility that RA may reduce eosinophilic airway inflammation, one of the prominent pathological features of allergic diseases such as bronchial asthma.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajplung.00289.2003DOI Listing

Publication Analysis

Top Keywords

retinoic acid
16
eotaxin production
16
human bronchial
12
bronchial epithelial
12
il-4-induced eotaxin
12
eotaxin
10
production human
8
epithelial cell
8
9-cis inhibited
8
inhibited il-4-induced
8

Similar Publications

Oncogenic role of RARG rearrangements in acute myeloid leukemia resembling acute promyelocytic leukemia.

Nat Commun

January 2025

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Acute myeloid leukemia (AML) featuring retinoic acid receptor-gamma (RARG) rearrangements exhibits morphological features resembling those of acute promyelocytic leukemia but is associated with drug resistance and poor clinical outcomes. However, the mechanisms underlying the role of RARG fusions in leukemogenesis remain elusive. Here, we show that RARG fusions disrupt myeloid differentiation and promote proliferation and self-renewal of hematopoietic stem and progenitor cells (HSPCs) by upregulating BCL2 and ATF3.

View Article and Find Full Text PDF

CPSF6-RARγ interacts with histone deacetylase 3 to promote myeloid transformation in RARG-fusion acute myeloid leukemia.

Nat Commun

January 2025

National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.

Acute myeloid leukemia (AML) with retinoic acid receptor gamma (RARG) fusions, which exhibits clinical features resembling acute promyelocytic leukemia (APL), has been identified as a new subtype with poor clinical outcomes. The underlying mechanism of RARG-fusion leukemia remains poorly understood, and needs to be explored urgently to instruct developing effective therapeutic strategies. Here, using the most prevalent RARG fusion, CPSF6-RARG (CR), as a representative, we reveal that the CR fusion, enhances the expansion of myeloid progenitors, impairs their maturation and synergizes with RAS mutations to drive more aggressive myeloid malignancies.

View Article and Find Full Text PDF

Tissue development relies on the coordinated differentiation of stem cells in dynamically changing environments. The formation of the vertebrate neural tube from stem cells in the caudal lateral epiblast (CLE) is a well characterized example. Despite an understanding of the signalling pathways involved, the gene regulatory mechanisms remain poorly defined.

View Article and Find Full Text PDF

BackgroundAllergic diseases have become one of the major public health problems to be addressed in the world today. As a tissue resident cell, mast cells are crucial in the pathogenesis of allergic diseases. Vitamin A is an important fat-soluble vitamin with immunomodulatory functions.

View Article and Find Full Text PDF

Pathogen-associated molecular patterns (PAMPs) are highly conserved motifs originating from microorganisms that act as ligands for pattern recognition receptors (PRRs), which are crucial for defense against pathogens. Thus, PAMP-mimicking vaccines may induce potent immune activation and provide broad-spectrum protection against microbes. Dextran encapsulation can regulate the surface characteristics of nanoparticles (NPs) and induces their surface modification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!