Effect of ribose supplementation on resynthesis of adenine nucleotides after intense intermittent training in humans.

Am J Physiol Regul Integr Comp Physiol

Human Physiology, Copenhagen Muscle Research Centre, Institute for Excersize and Sport Science, DK-2100 Copenhagen, Denmark.

Published: January 2004

The effect of oral ribose supplementation on the resynthesis of adenine nucleotides and performance after 1 wk of intense intermittent exercise was examined. Eight subjects performed a random double-blind crossover design. The subjects performed cycle training consisting of 15 x 10 s of all-out sprinting twice per day for 7 days. After training the subjects received either ribose (200 mg/kg body wt; Rib) or placebo (Pla) three times per day for 3 days. An exercise test was performed at 72 h after the last training session. Immediately after the last training session, muscle ATP was lowered (P < 0.05) by 25 +/- 2 and 22 +/- 3% in Pla and Rib, respectively. In both Pla and Rib, muscle ATP levels at 5 and 24 h after the exercise were still lower (P < 0.05) than pretraining. After 72 h, muscle ATP was similar (P > 0.05) to pretraining in Rib (24.6 +/- 0.6 vs. 26.2 +/- 0.2 mmol/kg dry wt) but still lower (P < 0.05) in Pla (21.1 +/- 0.5 vs. 26.0 +/- 0.2 mmol/kg dry wt) and higher (P < 0.05) in Rib than in Pla. Plasma hypoxanthine levels after the test performed at 72 h were higher (P < 0.05) in Rib compared with Pla. Mean and peak power outputs during the test performed at 72 h were similar (P > 0.05) in Pla and Rib. The results support the hypothesis that the availability of ribose in the muscle is a limiting factor for the rate of resynthesis of ATP. Furthermore, the reduction in muscle ATP observed after intense training does not appear to be limiting for high-intensity exercise performance.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpregu.00286.2003DOI Listing

Publication Analysis

Top Keywords

muscle atp
16
test performed
12
pla rib
12
ribose supplementation
8
supplementation resynthesis
8
resynthesis adenine
8
adenine nucleotides
8
intense intermittent
8
subjects performed
8
day days
8

Similar Publications

Pancreatic expression of CPT1A is essential for whole body glucose homeostasis by supporting glucose-stimulated insulin secretion.

J Biol Chem

January 2025

Laboratory of Immunogenetics, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA; Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA. Electronic address:

Pancreatic islet β-cells express the Cpt1a gene, which encodes the enzyme carnitine palmitoyltransferase 1A (CPT1A), an enzyme that facilitates entry of long chain fatty acids into the mitochondria. Because fatty acids are required for glucose-stimulated insulin secretion, we tested the hypothesis that CPT1A is essential to support islet β-cell function and mass. In this study, we describe genetic deletion of Cpt1a in pancreatic tissue (Cpt1a) using C57BL/6J mice.

View Article and Find Full Text PDF

Preserving the balance of metabolic processes in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), is crucial for optimal vascular function and integrity. ECs are metabolically active and depend on aerobic glycolysis to efficiently produce energy for their essential functions, which include regulating vascular tone. Impaired EC metabolism is linked to endothelial damage, increased permeability and inflammation.

View Article and Find Full Text PDF

Dehydroandrographolide Succinate Attenuates Dexamethasone-Induced Skeletal Muscle Atrophy by Regulating Akt/GSK3β and MuRF-1 Pathways.

Eur J Pharmacol

January 2025

Department of Physiology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea. Electronic address:

Andrographis paniculata (AGPA) is known for its wide-ranging biological activities, including antiviral, antipyretic, and anticancer properties. However, its effects on muscle atrophy have not been well understood. This study investigates the impact of andrographolide (AD) and dehydroandrographolide succinate (DAS), key components of AGPA, on skeletal muscle atrophy using in vitro and in vivo models.

View Article and Find Full Text PDF

Modulatory roles of capsaicin on thermogenesis in C2C12 myoblasts and the skeletal muscle of mice.

Chem Biol Interact

January 2025

Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea. Electronic address:

Capsaicin, a polyphenol, is known to regulate energy expenditure and thermogenesis in adipocytes and muscles. However, its role in modulating uncoupling proteins (UCPs) and adenosine triphosphate (ATP)-dependent thermogenesis in muscles remains unclear. This study investigated the mechanisms underlying the role of capsaicin in modulating the UCP- and ATP-dependent thermogenesis in C2C12 myoblasts, as well as the gastrocnemius (GM) and soleus muscles (SM) of mice.

View Article and Find Full Text PDF

The core component of the actin cytoskeleton is the globular protein G-actin, which reversibly polymerizes into filaments (F-actin). Budding yeast possesses a single actin that shares 87%-89% sequence identity with vertebrate actin isoforms. Previous structural studies indicate very close overlap of main-chain backbones.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!