This paper describes the design, synthesis, and successful employment of inhibitors of 4-(beta-D-ribofuranosyl)aminobenzene-5'-phosphate (RFA-P) synthase, which catalyzes the first committed step in the biosynthesis of methanopterin, to specifically halt the growth of methane-producing microbes. RFA-P synthase catalyzes the first step in the synthesis of tetrahydromethanopterin, a key cofactor required for methane formation and for one-carbon transformations in methanogens. A number of inhibitors, which are N-substituted derivatives of p-aminobenzoic acid (pABA), have been synthesized and their inhibition constants with RFA-P synthase have been determined. Based on comparisons of the inhibition constants among various inhibitors, we propose that the pABA binding site in RFA-P synthase has a relatively large hydrophobic pocket near the amino group. These enzyme-targeted inhibitors arrest the methanogenesis and growth of pure cultures of methanogens. Supplying pABA to the culture relieves the inhibition, indicating a competitive interaction between pABA and the inhibitor at the cellular target, which is most likely RFAP synthase. The inhibitors do not adversely affect the growth of pure cultures of the bacteria (acetogens) that play a beneficial role in the rumen. Inhibitors added to dense ruminal fluid cultures (artificial rumena) halt methanogenesis; however, they do not inhibit volatile fatty acid (VFA) production and, in some cases, VFA levels are slightly elevated in the methanogenesis-inhibited cultures. We suggest that inhibiting methanopterin biosynthesis could be considered in strategies to decrease anthropogenic methane emissions, which could have an environmental benefit since methane is a potent greenhouse gas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC309974PMC
http://dx.doi.org/10.1128/AEM.69.12.7236-7241.2003DOI Listing

Publication Analysis

Top Keywords

rfa-p synthase
16
methanopterin biosynthesis
8
synthase catalyzes
8
inhibition constants
8
growth pure
8
pure cultures
8
inhibitors
6
synthase
5
targeting methanopterin
4
biosynthesis inhibit
4

Similar Publications

Comparative Investigation into Formycin A and Pyrazofurin A Biosynthesis Reveals Branch Pathways for the Construction of -Nucleoside Scaffolds.

Appl Environ Microbiol

January 2020

Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China

Formycin A (FOR-A) and pyrazofurin A (PRF-A) are purine-related -nucleoside antibiotics in which ribose and a pyrazole-derived base are linked by a -glycosidic bond. However, the logic underlying the biosynthesis of these molecules has remained largely unexplored. Here, we report the discovery of the pathways for FOR-A and PRF-A biosynthesis from diverse actinobacteria and propose that their biosynthesis is likely initiated by a lysine -monooxygenase.

View Article and Find Full Text PDF

The first committed step in methanopterin biosynthesis is catalyzed by 4-(beta-D-ribofuranosyl)aminobenzene 5'-phosphate (RFA-P) synthase. Unlike all known phosphoribosyltransferases, beta-RFA-P synthase catalyzes the unique formation of a C-riboside instead of an N-riboside in the condensation of p-aminobenzoic acid (pABA) and 5-phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) to produce 4-(beta-D-ribofuranosyl)aminobenzene 5'-phosphate (beta-RFA-P), CO(2), and inorganic pyrophosphate (PP(i)). Here we report the successful cloning, active overexpression in Escherichia coli, and purification of this homodimeric enzyme containing two 36.

View Article and Find Full Text PDF

This paper describes the design, synthesis, and successful employment of inhibitors of 4-(beta-D-ribofuranosyl)aminobenzene-5'-phosphate (RFA-P) synthase, which catalyzes the first committed step in the biosynthesis of methanopterin, to specifically halt the growth of methane-producing microbes. RFA-P synthase catalyzes the first step in the synthesis of tetrahydromethanopterin, a key cofactor required for methane formation and for one-carbon transformations in methanogens. A number of inhibitors, which are N-substituted derivatives of p-aminobenzoic acid (pABA), have been synthesized and their inhibition constants with RFA-P synthase have been determined.

View Article and Find Full Text PDF

A central step in the biosynthesis of the modified folate methanopterin is the condensation of p-aminobenzoic acid (pAB) and 5-phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) which produce 4-(beta-D-ribofuranosyl)aminobenzene 5'-phosphate (beta-RFA-P) [White, R. H. (1996) Biochemistry 35, 3447-3456].

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!