Aims: The severe acute respiratory syndrome (SARS) caused a large outbreak of atypical pneumonia in Beijing, China from early March 2003. We report the pathological features from three patients who died of SARS.
Methods: Autopsies were performed on three patients who died 9-15 days after the onset of the illness, and the clinical and laboratory features reviewed. Tissue sections were stained with haematoxylin and eosin (H&E), and in situ reverse transcriptase polymerase chain reaction (RT-PCR) on lung sections was performed using SARS coronavirus-specific primers.
Results: The typical gross pathological change in the lungs was diffuse haemorrhage on the lung surface. Histopathological examination revealed serous, fibrinous and haemorrhagic inflammation in most pulmonary alveoli, with capillary engorgement and some capillary microthrombosis. The pulmonary alveoli were thickened with interstitial mononuclear inflammatory infiltrates, diffuse alveolar damage, desquamation of pneumocytes and hyaline-membrane formation; fibrinoid material and erythrocytes were present in alveolar spaces. There were thromboemboli in some bronchial arterioles. Haemorrhagic necrosis and reduced numbers of lymphocytes were observed in lymph nodes and spleen. In situ RT-PCR detected SARS coronavirus RNA in type II alveolar cells, interstitial cells and bronchiolar epithelial cells from all three patients.
Conclusions: Severe immunological damage in lung tissue is responsible for the clinical features of SARS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7131316 | PMC |
http://dx.doi.org/10.1080/00313020310001619118 | DOI Listing |
Nat Commun
January 2025
National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.
Uropathogenic Escherichia coli (UPEC) is a major cause of urinary tract infections (UTIs). Invasion into bladder epithelial cells (BECs) on the bladder luminal surface via type 1 fimbria is the first critical step in UPEC infection. Although type 1 fimbria expression increases during UPEC invasion of BECs, the underlying regulatory mechanisms remain poorly understood.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Haematology, Oslo University Hospital, P.O. Box 4950, Oslo, 0424, Norway.
Whether the fat-soluble vitamins A, D, E, and K are associated with development of graft-versus-host disease (GvHD) after allogeneic stem cell transplantation, is unclear. We assessed if the levels of these vitamins were associated with development of GvHD during the first year after transplantation using data from a two-armed randomized nutritional intervention trial. Changes in plasma levels during 1-year follow-up were analyzed using a linear mixed model for repeated measurements.
View Article and Find Full Text PDFPathology
December 2024
Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
Viral infections of the central nervous system (CNS) have been emerging and re-emerging worldwide, and the Australasia region has not been spared. Enterovirus A71 and enterovirus D68, both human enteroviruses, are likely to replace the soon-to-be eradicated poliovirus to cause global outbreaks associated with neurological disease. Although prevalent elsewhere, the newly emergent orthoflavivirus, Japanese encephalitis virus (genotype IV), caused human infections in Australia in 2021, and almost certainly will continue to do so because of spillovers from the natural animal host-vector life cycle endemic in the country.
View Article and Find Full Text PDFTherapie
December 2024
CHU Lille, University Lille, Intensive Médecine Reanimation, 59000 Lille, France.
Mol Genet Metab
January 2025
Clinical Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium. Electronic address:
Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) deficiency is a rare, potentially life-threatening autosomal recessive disorder resulting from mutations in the HMGCS2 gene, leading to impaired ketogenesis. We systematically reviewed the clinical presentations, biochemical and genetic abnormalities in 93 reported cases and 2 new patients diagnosed based on biochemical findings. Reported onset ages ranged from 3 months to 6 years, mostly before the age of 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!