[Age-specific morphological-functional characteristics of the rabbit's hippocampal neurons during conditioning].

Zh Vyssh Nerv Deiat Im I P Pavlova

Brain Research Institute, Russian Academy of Medical Sciences, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow.

Published: March 2004

Formation of trace rhythm recruitment (an analogue of conditioned time reflex) was studies in CA3 hippocampal neurons of alert young (less than one year), old (54-65 months), and very old rabbits after a prolonged (10-20 min) electro-cutaneous stimulation of a forelimb with the frequency of 0.5-1 Hz. Comparative analysis of neuronal spike activity in young and old rabbits showed that in the late ontogeny the number of spontaneously active neurons was significantly decreased, the proportion of slowly firing neurons increased, the interspike intervals and intervals between spike groups became longer, the number of spikes in a group reduced. The ability of hippocampal neurons to acquire and reproduce the rhythm of the previous stimulation declined with age. No appropriate rhythms were found in neurons of very old animals. A nonspecific increase in neuronal baseline activity was observed in old rabbits after the stimulation. Deterioration of morphological structures of hippocampal neurons and glial cells may explain the impairment of mnestic processes in late ontogeny.

Download full-text PDF

Source

Publication Analysis

Top Keywords

hippocampal neurons
16
late ontogeny
8
neurons
7
[age-specific morphological-functional
4
morphological-functional characteristics
4
characteristics rabbit's
4
hippocampal
4
rabbit's hippocampal
4
neurons conditioning]
4
conditioning] formation
4

Similar Publications

Neurons in the cerebral cortex and hippocampus discharge synchronously in brain state-dependent manner to transfer information. Published studies have highlighted the temporal coordination of neuronal activities between the hippocampus and a neocortical area, however, how the spatial extent of neocortical activity relates to hippocampal activity remains partially unknown. We imaged mesoscopic neocortical activity while recording hippocampal local field potentials in anesthetized and unanesthetized GCaMP-expressing transgenic mice.

View Article and Find Full Text PDF

Scaling of ventral hippocampal activity during anxiety.

J Neurosci

January 2025

Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bern, Switzerland.

The hippocampus supports a multiplicity of functions, with the dorsal region contributing to spatial representations and memory, and the ventral hippocampus (vH) being primarily involved in emotional processing. While spatial encoding has been extensively investigated, how the vH activity is tuned to emotional states, e.g.

View Article and Find Full Text PDF

Glioprotective Effects of Resveratrol Against Glutamate-Induced Cellular Dysfunction: The Role of Heme Oxygenase 1 Pathway.

Neurotox Res

January 2025

Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.

Resveratrol, a natural polyphenol, has shown promising neuroprotective effects in several in vivo and in vitro experimental models. However, the mechanisms by which resveratrol mediates these effects are not fully understood. Glutamate is the major excitatory neurotransmitter in the brain; however, excessive extracellular glutamate levels can affect neural activity in several neurological diseases.

View Article and Find Full Text PDF

MicroRNA-502-3p (MiR-502-3p), a synapse enriched miRNA is considerably implicated in Alzheimer's disease (AD). Our previous study found the high expression level of miR-502-3p in AD synapses relative to controls. Further, miR-502-3p was found to modulate the GABAergic synapse function via modulating the GABA A receptor subunit α-1 (GABRA1) protein.

View Article and Find Full Text PDF

Gamma oscillations are disrupted in various neurological disorders, including Alzheimer's disease (AD). In AD mouse models, non-invasive audiovisual stimulation (AuViS) at 40 Hz enhances gamma oscillations, clears amyloid-beta, and improves cognition. We investigated mechanisms of circuit remodeling underlying these restorative effects by leveraging the sensitivity of hippocampal neurogenesis to activity in middle-aged wild-type mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!