Band-target entropy minimization (BTEM) has been applied to extraction of component spectra from hyperspectral Raman images. In this method singular value decomposition is used to calculate the eigenvectors of the spectroscopic image data set. Bands in non-noise eigenvectors that would normally be used for recovery of spectra are examined for localized spectral features. For a targeted (identified) band, information entropy minimization or a closely related algorithm is used to recover the spectrum containing this feature from the non-noise eigenvectors, plus the next 5-30 eigenvectors, in which noise predominates. Tests for which eigenvectors to include are described. The method is demonstrated on one synthesized Raman image data set and two bone tissue specimens. By inclusion of small amounts of signal that would be unused in other methods, BTEM enables the extraction of a larger number of component spectra than are otherwise obtainable. An improvement in signal/noise ratio of the recovered spectra is also obtained.

Download full-text PDF

Source
http://dx.doi.org/10.1366/000370203322554509DOI Listing

Publication Analysis

Top Keywords

entropy minimization
12
image data
12
band-target entropy
8
minimization btem
8
btem applied
8
hyperspectral raman
8
raman image
8
component spectra
8
data set
8
non-noise eigenvectors
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!