Cyclin-dependent protein kinases play important roles in cell cycle progression and are attractive targets for the design of anti-proliferative drugs. Two distinct synthetic CDK1/2 inhibitors, Roscovitine and NU2058, are pharmacologically distinct in their ability to modify p53-dependent transcription and perturb cell cycle progression. Although such active-site CDK1/2 inhibitors comprise the most standard type of enzyme inhibitor, many protein kinases are proving to harbour high affinity docking sites that may provide a potentially novel interface for the design of kinase-inhibitors. We examined whether CDK2 has a docking site for its oligomeric substrate p53, whether small-peptide leads can be developed that inhibit CDK2 function, and whether such peptide-inhibitors are pharmacologically distinct from Roscovitine or NU2058. A docking site for CDK2 was identified in the tetramerization domain of p53 at a site that is distinct from the phospho-acceptor site. Peptides derived from the tetramerization domain of p53 block CDK2 phosphorylation and identification of critical CDK2 contacts in the tetramerization domain of p53 suggest that kinase docking does not require tetramerization of the substrate. Transient transfection assays were developed to show that the GFP-CDK2 docking site fusion protein (GFP-CIP) attenuates p53 activity in vivo and suppresses p21WAF1 induction which is similar to NU2058 but distinct from Roscovitine. A stable cell line with an inducible GFP-CIP gene attenuates p53 activity and induces significant cell death in a drug-resistant melanoma cell line, sensitizes cells to death induced by Doxorubicin, and suppresses cell growth in a colony formation assay. These data indicate that CDK2, in addition to cyclin A, can have a high affinity docking site for a substrate and highlights the possibility that CDK2 docking sites may represent effective targets for inhibitor design.
Download full-text PDF |
Source |
---|
JACS Au
December 2024
Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, P. R. China.
In this study, we developed a machine-learning-aided protein design strategy for engineering hemoglobin (VHb) as carbene transferase. A Natural Language Processing (NLP) model was used for the first time to construct an algorithm (EESP, enzyme enantioselectivity score predictor) and predict the enantioselectivity of VHb. We identified critical amino acid residue sites by molecular docking and established a simplified mutation library by site-saturated mutagenesis.
View Article and Find Full Text PDFBiochem Res Int
December 2024
Kentucky College of Osteopathic Medicine, University of Pikeville, Pikeville 41501, Kentucky, USA.
Alzheimer's disease (AD), a neurological disorder, is one of the major reasons for memory loss in the world. AD is characterized by a sequela of cognitive and functional decline caused by brain cell degeneration. Paeoniflorin is a monoterpenoid glycoside found in plants of the Paeoniaceae family, which are known for their medicinal properties including dementia.
View Article and Find Full Text PDF3 Biotech
January 2025
Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang, 26300 Kuantan, Pahang Malaysia.
Diabetes mellitus (DM) is a metabolic disease marked by an excessive rise in blood sugar (glucose) levels caused by a partial or total absence of insulin production, combined with alterations in the metabolism of proteins, lipids, and carbohydrates. The International Diabetes Federation estimates that 425 million individuals globally had diabetes in 2017 which will be 629 million by 2045. Several medications are used to treat DM, but they have limitations and side effects including weight gain, nausea, vomiting, and damage to blood vessels and kidneys.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China. Electronic address:
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q), an oxidative derivative of tire anti-degradant, has been linked to mortality in coho salmon (Oncorhynchus kisutch) and has exhibited potential human toxicity. Hence, exploring how 6PPD-Q interacts with biomacromolecules like enzymes is indispensable to assess its human toxicity and elucidate its mechanism of action. This investigation aims to explore the impact of 6PPD-Q on lactate dehydrogenase (LDH) through various methods.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran. Electronic address:
In this work, we sought to apprehend quercetin binding affinity and its interaction behavior in complex with human serum albumin (HSA) and calf thymus DNA (ctDNA) through multi spectroscopy and molecular dynamics and also evaluated its effects on colorectal cancer. The binding constants of ctDNA-quercetin and HSA-quercetin complexes at 298 K, which were calculated to be (2.67 ± 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!