Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Functional interactions between ligand-gated, voltage-, and Ca(2+)-activated ion channels are essential to the properties of excitable cells and thus to the working of the nervous system. The outer hair cells in the mammalian cochlea receive efferent inputs from the brain stem through cholinergic nerve fibers that form synapses at their base. The acetylcholine released from these efferent fibers activates fast inhibitory postsynaptic currents mediated, to some extent, by small-conductance Ca(2+)-activated K+ channels (SK) that had not been cloned. Here we report the cloning, characterization, and expression of a complete SK2 cDNA from the mouse cochlea. The cDNAs of the mouse cochlea alpha9 and alpha10 acetylcholine receptors were also obtained, sequenced, and coexpressed with the SK2 channels. Human cultured cell lines transfected with SK2 yielded Ca(2+)-sensitive K+ current that was blocked by dequalinium chloride and apamin, known blockers of SK channels. Xenopus oocytes injected with SK2 in vitro transcribed RNA, under conditions where only outward K+ currents could be recorded, expressed an outward current that was sensitive to EGTA, dequalinium chloride, and apamin. In HEK-293 cells cotransfected with cochlear SK2 plus alpha9/alpha10 receptors, acetylcholine induced an inward current followed by a robust outward current. The results indicate that SK2 and the alpha9/alpha10 acetylcholine receptors are sufficient to partly recapitulate the native hair cell efferent synaptic response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.00630.2003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!