Control of secretion by temporal patterns of action potentials in adrenal chromaffin cells.

J Neurosci

Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.

Published: December 2003

Action potentials (APs) are the principal physiological stimuli for neurotransmitter secretion in neurons. Most studies on stimulus-secretion coupling have been performed under voltage clamp using artificial electrical stimuli. To investigate the modulatory effects of AP codes on neural secretion, we introduce a capacitance method to study AP-induced secretion in single cells. The action potential pattern was defined by a four-parameter "code function:" F(n, m, f, d). With this method, cell secretion evoked by stimulation with an AP code was quantified in real time by membrane capacitance (Cm) in adrenal chromaffin cells. We found, in addition to AP frequency (f), for a given number of APs, another parameter of the AP code, the number of AP bursts (m) in which the set of APs occurs, can effectively modulate cell secretion. Possible mechanisms of the m effect are depletion of the readily releasable pool and inactivation of Ca2+ channels during a burst of APs. The physiological m effect may play a key role in AP-mediated neural information transfer within a single neuron and among the elements of a neural network.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6741046PMC
http://dx.doi.org/10.1523/JNEUROSCI.23-35-11235.2003DOI Listing

Publication Analysis

Top Keywords

action potentials
8
adrenal chromaffin
8
chromaffin cells
8
cells action
8
cell secretion
8
secretion
5
control secretion
4
secretion temporal
4
temporal patterns
4
patterns action
4

Similar Publications

Background: Alzheimer's disease disproportionately affects women in the U.S., with two-thirds of individuals diagnosed being female.

View Article and Find Full Text PDF

Neurons encode information in the highly variable spiking activity of neuronal populations, so that different repetitions of the same stimulus can generate action potentials that vary significantly in terms of the count and timing. How does spiking variability originate, and does it have a functional purpose? Leveraging large-scale intracellular electrophysiological data, we relate the spiking reliability of cortical neurons in-vitro during the intracellular injection of current resembling synaptic inputs to their morphologic, electrophysiologic, and transcriptomic classes. Our findings demonstrate that parvalbumin+ (PV) interneurons, a subclass of inhibitory neurons, show high reliability compared to other neuronal subclasses, particularly excitatory neurons.

View Article and Find Full Text PDF

During memory formation, the hippocampus is presumed to represent the content of stimuli, but how it does so is unknown. Using computational modelling and human single-neuron recordings, we show that the more precisely hippocampal spiking variability tracks the composite features of each individual stimulus, the better those stimuli are later remembered. We propose that moment-to-moment spiking variability may provide a new window into how the hippocampus constructs memories from the building blocks of our sensory world.

View Article and Find Full Text PDF

The hippocampal CA3 subregion is a densely connected recurrent circuit that supports memory by generating and storing sequential neuronal activity patterns that reflect recent experience. While theta phase precession is thought to be critical for generating sequential activity during memory encoding, the circuit mechanisms that support this computation across hippocampal subregions are unknown. By analyzing CA3 network activity in the absence of each of its theta-modulated external excitatory inputs, we show necessary and unique contributions of the dentate gyrus (DG) and the medial entorhinal cortex (MEC) to phase precession.

View Article and Find Full Text PDF

Effects of ketamine and propofol on muscarinic plateau potentials in rat neocortical pyramidal cells.

PLoS One

January 2025

Department of Molecular Medicine, Brain Signalling Laboratory, Institute of Basic Medical Sciences, Section for Physiology, University of Oslo, Oslo, Norway.

Propofol and ketamine are widely used general anaesthetics, but have different effects on consciousness: propofol gives a deeply unconscious state, with little or no dream reports, whereas vivid dreams are often reported after ketamine anaesthesia. Ketamine is an N-methyl-D-aspartate (NMDA) receptor antagonist, while propofol is a γ-aminobutyric-acid (GABAA) receptor positive allosteric modulator, but these mechanisms do not fully explain how these drugs alter consciousness. Most previous in vitro studies of cellular mechanisms of anaesthetics have used brain slices or neurons in a nearly "comatose" state, because no "arousing" neuromodulators were added.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!