Oxidized low-density lipoprotein (oxLDL) is an important risk factor for vascular injury. Its role on coronary vasoconstriction remains speculative. Endothelial monooxygenases (cytochrome P450s [CYPs]) are regulators of vascular tonus through production of epoxy fatty acids. We investigated the effects of oxLDL on CYP monooxygenases in human arterial coronary endothelial cells and explanted healthy and atherosclerotic aortae. We found oxLDL to induce radical oxygen species production via the action of NADPH oxidase NOX4. Intracellular radical oxygen species production prompted reduced protein expression of the transcriptional regulator nuclear factor 1 (NF-1). We identified novel DNA binding sites for NF-1 in promoter regions of CYPs. DNA binding of NF-1 was confirmed by electromobility shift assays. OxLDL repressed DNA binding of NF-1 and diminished transcript level of CYP genes targeted by this factor. The production of endothelial-derived hyperpolarization factor, a key regulator of vascular tonus, was also reduced. Repression of CYP monooxygenases was reversed, and production of endothelial-derived hyperpolarization factor was normalized after treatment of endothelium with the lectin-like oxLDL receptor antagonist kappa-carrageenan or blocking of LOX-1 with a specific antibody. This suggests a mechanistic role of CYP monooxygenases in oxLDL-induced vascular injury. Therapy of endothelial dysfunction through LOX-1 receptor antagonism will be an interesting avenue to explore. The full text of this article is available online at http://www.circresaha.org.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.RES.0000110081.03480.E9 | DOI Listing |
J Biophotonics
January 2025
Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China.
Diabetes mellitus (DM), a chronic metabolic disorder that adversely affects the blood-brain barrier (BBB) and microglial function in the central nervous system (CNS), contributing to neuronal damage and neurodegenerative diseases. However, the underlying molecular mechanisms linking diabetes to BBB dysfunction and microglial dysregulation remain poorly understood. Here, we assessed the impacts of diabetes on BBB and microglial reactivity and investigated its mechanisms.
View Article and Find Full Text PDFUrology
January 2025
Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH. Electronic address:
Objectives: To develop a predictive tool to assist in predicting the risk of Acute Kidney Injury (AKI) following robot-assisted partial nephrectomy (RAPN).
Methods: A retrospective review was performed on the prospectively maintained, IRB-approved database to identify all consecutive patients who underwent RAPN between 2008 and 2023. Patients with end-stage kidney disease (ESKD), horseshoe kidneys, solitary kidneys, and previous renal transplant recipients were excluded.
PLoS One
January 2025
Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Muenster, Germany.
Weibel-Palade bodies (WPB) are secretory organelles exclusively found in endothelial cells and among other cargo proteins, contain the hemostatic von-Willebrand factor (VWF). Stimulation of endothelial cells results in exocytosis of WPB and release of their cargo into the vascular lumen, where VWF unfurls into long strings of up to 1000 µm and recruits platelets to sites of vascular injury, thereby mediating a crucial step in the hemostatic response. The function of VWF is strongly correlated to its structure; in order to fulfill its task in the vascular lumen, VWF has to undergo a complex packing/processing after translation into the ER.
View Article and Find Full Text PDFBiochem Genet
January 2025
Department of Pulmonary Disease, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
Angiotensin-converting enzyme 2 (ACE2) has been reported to exert a protective effect in acute lung injury (ALI), though its underlying mechanism remains incompletely understood. In this study, ACE2 expression was found to be upregulated in a mouse model of ALI induced by lipopolysaccharide (LPS) injection. ACE2 knockdown modulated the severity of ALI, the extent of autophagy, and the mTOR pathway in this model.
View Article and Find Full Text PDFIntensive Care Med
January 2025
Center for Disease Mechanisms Research, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
Purpose: Major cardiovascular surgery imposes high physiologic stress, often causing severe organ dysfunction and poor outcomes. The underlying mechanisms remain unclear. This study investigated metabolic changes induced by major cardiovascular surgery and the potential role of identified metabolic signatures in postoperative acute kidney injury (AKI).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!