We analyzed mutations of 7 vitamin K-dependent protein and cytochrome P450 2C9 genes in 45 patients and investigated whether any contribute to the large interpatient variability in the warfarin dose-effect relationship. Total clearance and daily dose, INR and INR/Cp, were used as pharmacokinetic and pharmacodynamic indexes, respectively. Patients were grouped by genotype based on a single polymorphism and combinations of polymorphisms. Among the 30 sequence variants identified, CYP2C9*3, 165Thr-->Met of the factor II gene, -402G-->A, (37-bp repeat)n, and -746T-->C of the factor VII gene, and (CAA repeat)n of the gamma-glutamyl carboxylase gene were selected as candidate polymorphisms. As the analysis of single polymorphisms implied, the highest INR/Cp mean values and the lowest warfarin maintenance doses were observed in patients homozygous for the 165Met, -402G, (37-bp repeat)6 and -746T alleles. Multiple regression analysis revealed that warfarin sensitivity was independently associated with -402G-->A, (CAA repeat)n, CYP2C9*3, and 165Thr-->Met, which accounted for 50% of variance. These results suggest that part of the considerable interpatient variation is attributable to genetic variation, and the combined genotyping of CYP2C9 and certain vitamin K-dependent protein genes is useful for predicting anticoagulant responses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1182/blood-2003-09-3043 | DOI Listing |
Methods Enzymol
November 2024
Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States. Electronic address:
Gamma-glutamyl carboxylase (GGCX), a polytopic membrane protein found in the endoplasmic reticulum, catalyzes the posttranslational modification of a variety of vitamin K-dependent (VKD) proteins to their functional forms. GGCX uses the free energy from the oxygenation of reduced vitamin K to remove the proton from the glutamate residue to drive VKD carboxylation. During the process of carboxylation, reduced vitamin K is oxidized to vitamin K epoxide.
View Article and Find Full Text PDFMethods Enzymol
November 2024
Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine at CWRU, Cleveland, OH, United States.
Semin Thromb Hemost
November 2024
Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy.
Vitamin K-dependent coagulation factors deficiency (VKCFD) is a rare autosomal recessive genetic disease characterized by impaired levels of multiple coagulation factors (II, VII, IX, and X) and natural anticoagulants (proteins C and S). VKCFD is part of familial multiple coagulation factor deficiencies, reporting overall 50 affected families thus far. Disease manifestations are quite heterogeneous, bleeding symptoms may vary, and even, although generally mild, some patients may succumb to fatal outcomes.
View Article and Find Full Text PDFFront Genet
September 2024
PXE International, Inc., Damascus, MD, United States.
Skinmed
August 2024
Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon;
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!