AI Article Synopsis

Article Abstract

The lateral (LA), basolateral (BL) and basomedial (BM) amygdaloid nuclei were compared in the guinea pig (Cavia porcellus), rabbit (Oryctolagus cuniculus) fox (Vulpes vulpes) and pig (Sus scrofa) by using the Golgi techniques. The interspecific comparisons of the individual basolateral nuclei have shown that the neuronal structure in each of them is extremely stable and remains almost unchanged in the series of animals studied. The only difference is the size of the basolateral neurons, which increases with the increasing size of the brain. Moreover, the intraspecific comparisons revealed that in all the animals studied LA, BL and BM form a fairly homogenous mass of cells in which similar cell types are present. The most numerous neurons in all basolateral nuclei are the spiny cells that often show a pyramidal or semi-pyramidal appearance (the Type I cells). Many of these have conical cell bodies and easily recognisable "apical" and "basal" dendrites. The Type II neurons are the most common variety of non-pyramidal cell and have round cell bodies and smooth or sparsely spined dendrites. The axons of these cells often form a dense terminal field that remains in the vicinity of the parent soma. The Type III cells, which are only occasionally seen, are small spine-sparse neurogliaform neurons with a few extremely delicate beaded dendrites and a poorly branching local axon. These neurons were only located in LA and BL.

Download full-text PDF

Source

Publication Analysis

Top Keywords

basolateral nuclei
8
animals studied
8
cell bodies
8
basolateral
5
neurons
5
cells
5
comparative study
4
study mammalian
4
mammalian amygdala
4
amygdala golgi
4

Similar Publications

Basal forebrain innervation of the amygdala: an anatomical and computational exploration.

Brain Struct Funct

January 2025

Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, Bebek, 34342, Istanbul, Turkey.

Theta oscillations of the mammalian amygdala are associated with processing, encoding and retrieval of aversive memories. In the hippocampus, the power of the network theta oscillation is modulated by basal forebrain (BF) GABAergic projections. Here, we combine anatomical and computational approaches to investigate if similar BF projections to the amygdaloid complex provide an analogous modulation of local network activity.

View Article and Find Full Text PDF

Structural changes involving new neurons can occur through stem cell-driven neurogenesis and late-maturing immature neurons, namely undifferentiated neuronal precursors frozen in a state of arrested maturation. The latter exist in the cerebral cortex, being particularly abundant in large-brained mammals. Similar cells have been described in the amygdala of some species, although their interspecies variation remain poorly understood.

View Article and Find Full Text PDF

Electroconvulsive therapy (ECT) is one of the most effective treatments for depression. ECT induces volume changes in the amygdala, a key center of anxiety. However, the clinical relevance of ECT-induced changes in amygdala volume remains uncertain.

View Article and Find Full Text PDF
Article Synopsis
  • The amygdala, a key brain region for emotion and memory, shows enhanced memory encoding through electrical stimulation, particularly in its basolateral complex (BLA).
  • Direct stimulation using rhythmic theta-burst stimulation (TBS) has been found to improve both emotional and non-emotional declarative memory by promoting synaptic plasticity in areas like the hippocampus.
  • A study conducted during a memory task revealed that TBS modulates neuronal activity in the brain, with specific neuron characteristics influencing how they respond to stimulation, which is significant for future neuromodulation therapies.
View Article and Find Full Text PDF

Posterior Basolateral Amygdala is a Critical Amygdaloid Area for Temporal Lobe Epilepsy.

Adv Sci (Weinh)

December 2024

Department of Neurology and Department of Psychiatry of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.

The amygdaloid complex consists of multiple nuclei and is a key node in controlling temporal lobe epilepsy (TLE) in both human and animal model studies. However, the specific nucleus in the amygdaloid complex and the neural circuitry governing seizures remain unknown. Here, it is discovered that activation of glutamatergic neurons in the posterior basolateral amygdala (pBLA) induces severe seizures and even mortality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!