Objective: The aim of the present study was to examine to what extent maternal and offspring phenylalanine hydroxylase (PAH) genotypes in conjunction with maternal IQ and dietary control during pregnancy are related to cognitive development in offspring of women with phenylketonuria (PKU).
Methods: PAH gene mutations were determined in 196 maternal PKU subjects and their offspring. The women were grouped according to PAH genotype, which predicts the metabolic phenotype (severe PKU, mild PKU, and mild hyperphenylalaninemia [MHP]). IQ was determined in both the mothers (Wechsler Adult Intelligence Scale-Revised at >18 years) and their children (Wechsler Intelligence Scale for Children-Revised at > or = 6-7 years of age).
Results: According to PAH genotypes, 62% of the women exhibited severe PKU, 19% exhibited mild PKU, and 19% exhibited MHP. Maternal IQ increased, and the assigned phenylalanine (Phe) levels decreased with decreasing severity of PAH genotype. In offspring of mild maternal PKU, multiple regression analysis showed offspring IQ to be significantly related to maternal IQ but not to Phe exposure during pregnancy, which was <750 micromol/L in all cases of mild PKU. In offspring of mothers with severe PKU and average Phe exposure during pregnancy of 360 to 750 micromol/L, multiple regression analysis revealed both maternal IQ and Phe exposure to be significant predictors of offspring IQ. When average Phe exposure was <360 micromol/L, cognitive development was normal (mean IQ: 105), whereas an average Phe exposure of >750 micromol/L severely depressed offspring IQ (mean IQ: 56) in this group regardless of maternal IQ. It could not be documented that the offspring PAH genotype affects cognitive development.
Conclusion: Female individuals with severe PKU should be offered a diet for a lifetime. If good metabolic control is established, then women with PKU will have children with IQ scores that are not influenced by their disease.
Download full-text PDF |
Source |
---|
Bioprocess Biosyst Eng
January 2025
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.
p-Coumaric acid (p-CA), an invaluable phytochemical, has novel bioactivities, including antiproliferative, anxiolytic, and neuroprotective effects, and is the main precursor of various flavonoids, such as caffeic acid, naringenin, and resveratrol. Herein, we report the engineering of Escherichia coli for de novo production of p-CA via the PAL-C4H pathway. As the base strain, we used the E.
View Article and Find Full Text PDFJ Pharmacokinet Pharmacodyn
January 2025
PTC Therapeutics, Warren, NJ, USA.
Sepiapterin is an exogenously synthesized new chemical entity that is structurally equivalent to endogenous sepiapterin, a biological precursor of tetrahydrobiopterin (BH), which is a cofactor for phenylalanine hydroxylase. Sepiapterin is being developed for the treatment of hyperphenylalaninemia in pediatric and adult patients with phenylketonuria (PKU). This study employed concentration-QT interval analysis to assess QT prolongation risk following sepiapterin treatment.
View Article and Find Full Text PDFAAPS J
January 2025
Moderna, Inc., Cambridge, Massachusetts, USA.
While the branched DNA (bDNA) assay is an established bioanalytical method for measurement of lipid nanoparticle (LNP)-encapsulated messenger RNA (mRNA) pharmacokinetic parameters, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) has been considered as an alternative platform. RT-qPCR and bDNA platforms were compared for sensitivity, specificity, correlation, and overall assay performance using serum and tissue samples from 2 nonclinical mouse studies of a therapeutic mRNA candidate, LNP-PAH-mRNA, which encodes for human phenylalanine hydroxylase enzyme. Pharmacokinetic parameter noncompartmental analysis was completed using Phoenix WinNonlin.
View Article and Find Full Text PDFJ Pediatr Endocrinol Metab
January 2025
Department of Rare Diseases, Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Türkiye.
Objectives: Phenylketonuria (PKU) and tyrosinemia type 3 (HT3) are both rare autosomal recessive disorders of phenylalanine-tyrosine metabolism. PKU is caused by a deficiency in phenylalanine hydroxylase (PAH), leading to elevated phenylalanine (Phe) and reduced tyrosine (Tyr) levels. HT3, the rarest form of tyrosinemia, is due to a deficiency in 4-hydroxyphenylpyruvate dioxygenase (HPD).
View Article and Find Full Text PDFFront Plant Sci
December 2024
Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
Introduction: Heat stress caused by global warming adversely affects wheat yield through declining most nutritional quality attributes in grains, excluding grain protein content.
Methods: This research investigated the biochemical, physiological, and antioxidant responses of wheat plants under heat stress, focusing on the role of plant growth-promoting bacteria ( sp.).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!