Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Antineoplastic drugs belonging to platinum or taxane families are severely neurotoxic, inducing the onset of disabling peripheral neuropathies with different clinical signs. Acetyl-L-carnitine (ALC) is a natural occurring compound with a neuroprotective activity in several experimental paradigms. In this study we have tested the hypothesis that ALC may have a protective role on cisplatin and paclitaxel-induced neuropathy.
Experimental Design: Sensory nerve conduction velocity (SNCV) was measured in rats before, at end, and after an additional follow-up period from treatments with cisplatin, paclitaxel, or with the respective combination with ALC. In addition, serum from treated animals was collected to measure the levels of circulating NGF, and left sciatic nerves were processed for light and electron microscope observations. ALC interference on cisplatin and paclitaxel antitumor activity and protective mechanisms were investigated using several in vitro and in vivo models.
Results: ALC cotreatment was able to significantly reduce the neurotoxicity of both cisplatin and paclitaxel in rat models, and this effect was correlated with a modulation of the plasma levels of NGF in the cisplatin-treated animals. Moreover, experiments in different tumor systems indicated the lack of interference of ALC in the antitumor effects of cisplatin and paclitaxel. The transcriptional profile of gene expression in PC12 cells indicated that ALC, in the presence of NGF, was able to positively modulate NGFI-A expression, a gene relevant in the rescue from tissue-specific toxicity. Finally, the transcriptionally ALC-mediated effects were correlated to increase histone acetylation.
Conclusion: In conclusion, our results indicate that ALC is a specific protective agent for chemotherapy-induced neuropathy after cisplatin or paclitaxel treatment without showing any interference with the antitumor activity of the drugs.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!