Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Avian pathogenic Escherichia coli (APEC) are often found in poultry and are responsible for a set of diseases, commonly referred to as avian colibacillosis. One of the important virulence factors is adhesion to different epithelial surfaces, which is mediated by pili. P pili are thought to play a role by means of their PapG adhesin, which occurs in three molecular variants: PapGI, PapGII and PapGIII. This study is the first to determine and analyse the distribution of the different papG alleles in APEC. Our results show a significant predominance of the papGII allele above all other alleles or allele combinations. No statistically significant associations could be found between papG allele distribution and the type of bird, organ of isolation and O serogroup. Finally, the papGII and papGIII sequences showed high homology with mammalian (including human) source papG sequences.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vetmic.2003.09.017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!