Metabolism and potency of xenin and of its reduced hexapseudopeptide psi fragment in the dog.

Life Sci

DRK-Krankenhaus Neuwied Marktstr. 104 56564 Neuwied, Germany.

Published: December 2003

Xenin is a 25 amino acid peptide hormone, secreted into the circulation by specific endocrine cells in the duodenal mucosa. Plasma concentrations are elevated after sham feeding and feeding. In the present study the metabolism of xenin and of a C-terminal fragment was investigated. Xenin, its C-terminal hexapeptide, and a pseudopeptide analog psi (CH2NH) hexapeptide in which a psi reduced bond is introduced in the biologically important dibasic motif of the C-terminus were infused or injected intravenously in 14 anaesthetized dogs. Plasma disappearance time, metabolic clearance rate, the generation of metabolites, and biological effects on exocrine pancreatic secretion were determined employing radioimmunoassay, high pressure liquid chromatography, mass spectrometry (MALDI-MS), and sequence analysis. Half time after steady state infusion of xenin was 3.1 min(-1), that of psi xenin 6 was 6.2(-1) (p<0.01) Plasma concentrations of psi xenin 6 were significantly elevated (p<0.01), pancreatic secretion of volume was augmented by a factor of 50, and output of protein by a factor of 30 compared to unmodified xenin 6. MALDI-MS and sequencing after infusion of xenin revealed a C-terminal octapeptide fragment as primary metabolite. Introduction of a reduced pseudobond in the dibasic motif of xenin dramatically enhances biological potency. This indicates that such a reduced pseudopeptide may be useful in the treatment of bowel paralysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2003.05.009DOI Listing

Publication Analysis

Top Keywords

xenin c-terminal
8
xenin
6
metabolism potency
4
potency xenin
4
xenin reduced
4
reduced hexapseudopeptide
4
psi
4
hexapseudopeptide psi
4
psi fragment
4
fragment dog
4

Similar Publications

Minimum biological domain of xenin-25 required to induce anion secretion in the rat ileum.

Peptides

January 2022

Research Unit for Epithelial Physiology, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, 525-8577, Japan. Electronic address:

Xenin-25 has a variety of physiological functions in the gastrointestinal tract, including ion transport and motility. Xenin-25 and neurotensin show sequence homology, especially near their C-terminal regions. The sequence similarity between xenin-25 and neurotensin indicates that the effects of xenin-25 is mediated by the neurotensin receptor but some biological actions of xenin-25 are independent.

View Article and Find Full Text PDF

Recent studies have characterised the biological properties and glucose-dependent insulinotropic polypeptide (GIP) potentiating actions of an enzymatically stable, C-terminal hexapeptide fragment of the gut hormone xenin, namely Ψ-xenin-6. Given the primary therapeutic target of clinically approved dipeptidyl peptidase-4 (DPP-4) inhibitor drugs is augmentation of the incretin effect, the present study has assessed the capacity of Ψ-xenin-6 to enhance the antidiabetic efficacy of sitagliptin in high fat fed (HFF) mice. Individual administration of either sitagliptin or Ψ-xenin-6 alone for 18 days resulted in numerous metabolic benefits and positive effects on pancreatic islet architecture.

View Article and Find Full Text PDF

Xenin-25 undergoes rapid enzyme metabolism following secretion. Early studies demonstrated bioactivity of a C-terminal hexapeptide fragment of xenin-25, namely xenin-6, which were enhanced through introduction of a reduced N-terminal peptide bond, to yield Ψ-xenin-6. The present study was undertaken to define the biological actions and potential antidiabetic properties of Ψ-xenin-6.

View Article and Find Full Text PDF

Xenin Augments Duodenal Anion Secretion via Activation of Afferent Neural Pathways.

J Pharmacol Exp Ther

April 2017

Greater Los Angeles Veterans Affairs Healthcare System Los Angeles, California (I.K., Y.A., J.D.K.); Departments of Medicine (I.K., Y.A., K.M., J.D.K.) and Surgery (J.D.K.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Medical Biochemistry, Kobe Pharmaceutical University, Kobe, Kobe, Japan (I.K.); and Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Japan (A.K.)

Xenin-25, a neurotensin (NT)-related anorexigenic gut hormone generated mostly in the duodenal mucosa, is believed to increase the rate of duodenal ion secretion, because xenin-induced diarrhea is not present after Roux-en-Y gastric bypass surgery. Because the local effects of xenin on duodenal ion secretion have remained uninvestigated, we thus examined the neural pathways underlying xenin-induced duodenal anion secretion. Intravenous infusion of xenin-8, a bioactive C-terminal fragment of xenin-25, dose dependently increased the rate of duodenal HCO secretion in perfused duodenal loops of anesthetized rats.

View Article and Find Full Text PDF

Biological Activity and Antidiabetic Potential of C-Terminal Octapeptide Fragments of the Gut-Derived Hormone Xenin.

PLoS One

August 2016

SAAD Centre for Pharmacy and Diabetes, Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland, United Kingdom.

Xenin is a peptide that is co-secreted with the incretin hormone, glucose-dependent insulinotropic polypeptide (GIP), from intestinal K-cells in response to feeding. Studies demonstrate that xenin has appetite suppressive effects and modulates glucose-induced insulin secretion. The present study was undertaken to determine the bioactivity and antidiabetic properties of two C-terminal fragment xenin peptides, namely xenin 18-25 and xenin 18-25 Gln.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!